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ABSTRACT

The effective use of active magnetic bearings for vibration control in

turbomachinery depends on an understanding of the forces available from a magnetic

bearing actuator. The purpose of this project was to characterize the forces as functions

shaft position.

Both numerical and experimental studies were done to determine the characteristics

of the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical

studies were based on finite element computations and included both linear and nonlinear

magnetization functions.

Measurements of the force versus position of a nonrotating shaft were made using

two separate measurement rigs, one based on strain guage measurement of forces, the

other based on deflections of a calibrated beam.

The general trends of the measured principal forces agree with the predictions of the

theory while the magnitudes of forces are somewhat smaller than those predicted. Other

aspects of theory are not confirmed by the measurements. The measured forces in the

normal direction are larger than those predicted by theory when the rotor has a normal

eccentricity.

Over the ranges of position examined, the data indicate an approximately linear

relationship between the normal eccentricity of the shaft and the ratio of normal to principal

force. The constant of proportionality seems to be larger at lower currents, but for all cases

examined its value is between 0.14 and 0.17. The nonlinear theory predicts the existence

of normal forces, but has not predicted such a large constant of proportionality for the

ratio.

The type of coupling illustrated by these measurements would not tend to cause

whirl, because the coupling coefficients have the same sign, unlike the case of a fluid film

bearing, where the normal stiffness coefficients often have opposite signs. They might,

however, tend to cause other self-excited behavior. This possibility must be considered

when designing magnetic bearings for flexible rotor applications, such as gas turbines and

other turbomachinery.

In related work attached as an appendix, simulations of 2DOF systems subject to

these force models show that significant nonlinear behavior can occur, including multiple

coexisting solutions, bifurcations in response as the stabilities of the respective solutions

change, and self-similarity in stability boundaries.
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1. INTRODUCTION

This report describes work done under Grant NAG 3-968 during the performance

period October 1989 to 1 February 1992, in addition to further related work using

knowledge gained during the work performed under this grant. The purpose of the

research was to examine certain aspects of the potential of magnetic bearings for vibration

control in turbomachinery. The principal thrusts of the research have been

1) Calculation of the two-dimensional forces exerted on a shaft by a typical magnetic

actuator under open loop conditions.

2) Measurement of such forces using specially designed apparatus.

3) Simulation of dynamics of a simple rotor using the measured and calculated forces

along with a control law.

The report consists of three principal sections, plus three appendices. Section 1 is

an introduction and a brief review of pertinent literature at the time of the beginning of this

work.

Section 2 describes the analytical and numerical modelling of the magnetic flux

distribution in magnets of a magnetic actuator and the results of calculations of force

between the actuator and the shaft. Section 3 describes two kinds of experiments

conducted to determine the forces that are modelled in Section 2. Because comparisons

between theory and experiment are made, it is sometimes necessary to refer in Section 2 to

force measurements that will be described in more detail in Section 3. Similarly, Section 3

refers back to Section 2.

Appendix A is a listing of the computer program used for calculations using an air-

gap method. Appendix B is a description of methods used in calculations of force

including flux contained in metal parts.

Appendix C contains the text of a thesis submitted to Duke University by Thomas

Walsh for the M.S. degree, which uses the results of measurements and calculations done

under this grant in the simulation of a rotor-magnetic bearing system. This work was

performed subsequent to the actual grant period, but is included because of the close

relation to and dependence on the results obtained under this grant.

In addition to the sections describing technical findings, this report summarizes

related activities, including papers and reports, personnel, equipment and progress of

students.
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1.1 Magnetic Suspension of Turbomachine Shafts

The introduction of practical magnetic supports for rotating shafts is a recent

development. These devices have the potential of replacing fluid film bearings and rolling

element bearings in some critical applications, and of acting as supplemental control

actuators alongside these traditional bearings in order to limit vibration, noise and

instability. Figure 1.1 shows the general concept of a rotating shaft suspended by a set of

controlled magnetic actuators. In this report, the combination of an actuator, its sensors,

controller and power amplifier is called a magnetic bearing.

In a magnetic bearing the shaft is supported by the force established between a set of

electromagnets and the shaft due to the magnetic field. There is no direct contact between

the shaft and any part of the bearing. This method of support has several advantages over

traditional fluid film or rolling element bearings. Since no lubricant is needed, there is no

sealing requirement to prevent either the lubricant or the working fluid from contaminating

the other. Also, the lubricant supply system required for a traditional bearing is eliminated,

and the frictional losses in the magnetic support are negligible compared to those in a fluid

film bearing. Finally, since the magnetic bearing requires a feedback control system to

maintain stability even in a nonrotating steady-state case, this feedback loop may be used to

advantage in adjusting the dynamic characteristics of the rotor-bearing system to optimize

the machine's vibration characteristics. The magnetic bearing could be designed so that it

opposes the destabilizing effects of other parts of the system.

It is this last possibility that is the most exciting aspect of magnetic suspension. The

ability to control better the dynamics of shafts and thus to reduce the danger and expense

that result from high levels of vibration is the principal motivation for research in this field.

Magnetic bearings are rapidly gaining acceptance as replacements for traditional fluid

film bearings in the design of turbomachinery. Applications include the small and

sensitive, such as turbomolecular pumps and x-ray generation equipment, as well as the

extremely precise, such as machine tool spindles. At the other extreme, applications

include very large industrial machinery such as compressors, turbines and engines [1].

The motivations for these applications vary, but most are inspired by the possibility of

precise control of the rotor through the magnetic bearing's active feedback loop. In the

case of high precision machine tools there is an obvious need for precise control of tool

position, and this control is made possible through the active magnetic bearing to a degree

not possible by using other bearings, even the stiffest of rolling element bearings. This

degree of control is possible even though the parameters of the bearing may not have been
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accuratelyassessed,becausetheactivecontrollercompensatesfor poorlyknown

characteristicsby theexerciseof negativefeedback.Thus,eventhoughthesystemis not

fully optimized,itsperformancemaystill farexceedthatof passivebearingsin termsof
accuracyof positioning.

Theneedfor precisionforcegenerationis lessobviousbutno lesscrucialin thecase

of largeindustrialmachinery.In thiscase,themachinesaresolargeandexpensive,and

down-timeis socostly,thatit is essentialto minimizevibrationproblems.Manyof these

machinesoperateat speedshigherthanoneor two criticalspeeds,sovibrationproblems

canbe intense,andthenatureof theseproblemsbecomessuccessivelyworseas

performancedemandsareincreased.Thetraditionalapproachtowardminimizingvibration
is to designpassivefluid bearingsby choosingclearancesandlength-to-diameterratiosto

achievethebestpossibleeffectivestiffnessanddampingcharacteristics.Mostof the

dampingin theselargevibrationalsystemsarisesfrom thebearings,andin passive

bearingsthereis alwaysatradeoff betweendampingandstiffness.In addition,mostsuch

bearingsgiverisenotonly to principalrestoringforces,generallydesirable,butalsoto
forcesthatactnormalto aperturbationdirection.Dependingon theirsigns,theseforces

canbestabilizingordestabilizing.It is thenatureof fluid bearingsthatin mostpractical
situationstheyaredestabilizing.Thustheactivemagneticbearing,whichoffers

controllableforcesthatarein theoryuncoupled,hasastrongappealto themanufacturers

andusersof suchmachinery.

1.1.1 Disadvantages

Magneticbearingsarenotapanacea,however.Therearesignificantdrawbacksto

their use:magneticbearingsin generalarelargerandheavierthanequivalentfluid

bearings,theyrequirecontinuouscontrolandanuninterruptedpowersupplyandtherefore

needredundantcontrollersandbackuppowercapability,plusemergencybackupbearings

for shut-downincaseof completefailureof theactivesystem.Thesedisadvantagesmust

beweighedagainstthepositivefactorsof reducedpowerlosses,eliminationof lubricant
supplysystemandcontrollability.

Thedisadvantagesstemmingfromthesizeandweightfactorsmaybeminimized

with betterpredictionof theforcesavailablefromactuators,andtheeffectsof geometryon

theavailableforces.Relianceonsimplifiedtheoryfor theforcesavailablein anactuator

hasprobablyled to overdesignof thecomponents,andto arelianceoncontroller

robustnesstocompensatefor inaccuraciesin theforceprediction.In practicethe
installationof amagneticbearingsystemin alargeturbomachinehasbeenfoundto require



alengthyprocessof tuningbothon theteststandandlaterin thefield for eachindividual
machine

Betterforcepredictionwill allowoptimizationof theactuatorsthemselvesin anopen

loop sense,shorteningthetuningprocessandfreeingthedesignerof thecontrolsto

concentrateonhigherordersof vibrationcontrolstrategyTo thisend,theworkdescribed

in thisreportisconcentratedondevelopingreliableandefficientmethodsof predictingthe
forcesexertedby magnetsonarotor. Theworkconsistsof boththeoretical/numerical

analysisandexperimentalmeasurementsof forces.

1.1.2 Background

This sectiondescribesthebackgroundandstateof technologyin magneticbearings
largelyasit existedatthestartof thisproject.Thefollowingsectioncontainslimited

referencesto developmentsthatoccurredasthisworkproceeded.

Theconceptof suspendingamachinepartby forceof magneticattractionwas

introducedasearlyas1842[2], andsomeearlydevicesfor magneticsupportwere

attemptedusingpermanentmagnetsandelectromagnets,butpracticalapplicationof the idea

awaitedrelativelyrecentdevelopmentsincontroltechnologyandpowerelectronics.

Beams[3] in 1949built asuccessfulmagneticsuspensiondevicefor asmalldiameter
rotor (1/64inch) in orderto achievehighrotationalspeeds.Thesystemusedvacuumtubes

for controlandpoweramplification,andthuswaslimitedto supportingonly smallmasses.
Thefirst applicationof fully activemagneticsuspensionwasin thefield of

aerodynamicresearchwherea systemwasdevelopedto supportmodelsin wind tunnel

tests[4]. This isademandingapplicationbecausethedistancesbetweenthemagnetsand
themodelarelarge,but theforcesrequiredmaybesmall.

More recently,with thedevelopmentof solidstatepowerelectronicsandadvancesin

controls,moreattentionhasbeendevotedto thepossibleapplicationsof magnetic

suspensionto industrialandlaboratorymachinerywherelargeforcesmaybeinvolved.

Nikolajsen,et. al. [5] reportedon theuseof anelectromagneticdampingdevicefor

controllingvibrationin aflexible transmissionshaft. Schweitzer,et. al. [6] consideredthe

applicationof magneticbearingsto vibrationcontrolof pumpsandcentrifuges,and
discussedthemeritsof centralizedversusdecentralizedcontrol[7]. Theuseof magnetic

bearingsin aflexible rotorsystemwasalsoconsidered[8].

A numberof papershavebeenpublishedbeginningin theearly 1980'sonvarious

aspectsof thecontrolof shaftvibrationandsuspensionby magneticforces.

Allaire,et. al.performedtheoreticalstudiesof theeffectsof usingafeedbackactuator

on theunbalanceresponseof asinglemassrotoron rigid supports[9], andon flexible
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supports[ 10]. Theactuatorwasplacedat themasslocationandwasrepresentedby
feedbackwith gainsproportionalto shaftdisplacementandshaftvelocity. It wasfound

thatproportionalfeedbackcouldbeusedto alterthecriticalspeedsof thesystemoverwide

ranges,andthatderivativefeedbackcouldbeusedto changetheamplitudesof vibration.
Combinationsof proportionalandderivativefeedbacksignificantlyalteredthesystem
characteristicsin termsof bothcriticalspeedsandamplitudeof response.

An experimentaltestapparatusfor applyingfeedbackcontrolto amultimassrotorat

thebearinglocationswasconstructedby Heinzmann[11]. Therig usedactuatorsmade

from themovingvoicecoilsof loudspeakers,andtheforcewasapplieddirectlythrough
mechanicallinks attachedto ballbearingsontheshaft.Significanteffectson thecritical

speedsof thesystemwereachievedby feedbackcontrol.
Kelm [12]computedthelinearizedstiffnessanddampingcoefficientsfor afour-

magnetbearing,andmeasuredthecoefficientsinanexperimentalbearingfor atwo-inch
diametershaft.Preciseagreementbetweenpredictedandmeasuredvalueswasnot

achieved.

ConnorandTichy [13] haveproposedaneddycurrentbearingthatwouldgenerate

repulsiveratherthatattractiveforcesby inducingcurrentsin therotor.
ChenandDarlow [14]testedamagneticbearingconstructedby modifyingan

inductionmotorstatorandevaluatedtheeffectivenessof two schemesfor estimating

velocityandaccelerationin thefeedbackcontrolloop.
Walowit, et. al. [15] andAlbrechtet. al. [16] analyzedandtestedamagneticthrust

bearing.Their analysisandexperimentinvolvedtransversemisalignmentof theplane

surfacegapsbut noangularmisalignment.
Keith,et al. [17] haveexaminedseveralaspectsof proportional-derivativecontrol

usinga digital controller,andMaslen,et al. [18]considersomeof theperformance
limitationsof activebearings.

Paperscontainedin theproceedingsof thefirst significantinternationalgatheringof
researchersin thefield of magneticsuspensionof machineelements[19]address

applications,control, identificationof parametersandotheraspectsof magneticbearings

[20-22],aswell asapplicationsin space[23-24].

1.1.3DevelopmentsDuringthisProject
Accordingto literaturefrommagneticbearingmanufacturerS2M,asof 1991atotalof

morethan440,000hoursof operationhadbeenaccumulatedby machinesequippedwith

thecompany'sactivemagneticbearings[25]. The96 individualmachinesspanawide
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range of sizes, from blowers in the 5 to 200 kW range up to industrial compressors in the

25,000 kW range.

Along with increased industrial application of magnetic bearings came significant

new research. The proceedings of the Second International Symposium on Magnetic

Bearings [26] contain 53 technical papers on various aspects of magnetic bearings, by

authors from 12 countries.

These papers address several areas of application, including momentum wheels for

energy storage [27, 28], electrospindles for boring, grinding and milling operations [29,

30, 31 ], as well as suspension of large industrial machine rotors such as those of boiler

feed pumps [32], pipeline compressors [33], and nuclear circulating pumps [34].

There continued to be a growing interest in control aspects, with papers devoted to

digital control [35, 36, 37] and amplifier design [38, 39]. Several philosophies of control

were examined, including centralized vs. decentralized control [40], automatic balancing

[41], and modal control [42, 43]. One method of approaching linearity in magnetic

suspension systems is to apply large bias currents, upon which are superposed the control

currents. Higuchi et al. [37], however, used a digital control scheme to effect a

linearization of the magnetic bearing properties without using large bias fluxes.

Herzog and Bleuler [44] proposed the use of H _ control to achieve required

stiffness over wide bandwidth, and Fujita et al. [45], seeking a robust control design,

implemented H _ control using a commercial digital signal processor. Experiments

indicated that the system was highly stable when subjected to step disturbances.

Ueyama and Fujimoto [46] physically measured the iron losses due to hysteresis and

eddy currents by monitoring the coastdown of a rotor suspended in magnetic bearings, at

different values of coil current, and propose an empirical equation to represent these losses.

Zhang et al. [47] describe a magnetic bearing application in which the rotor is a thin

flexible shell, and discuss the advantages of individual magnet control versus control of

opposing magnet pairs. They conclude that improved damping is possible using the

individual magnet control. The authors speculate that the method will also be advantageous

in suspending travelling metal sheets.

Stability of a suspended rotor was considered by Chen et al. [48], but as in previous

such analyses, the representation of the magnetic forces is based on a linearized model.

Of particular interest in the context of the present project, Satoh et al. [49] examined

a self-excited vibration of a suspended rotor in a flexible structure. The authors concluded

that interactions between the mechanical structure and nonlinearity of the electromagnets led

to a vibration with two frequency components.



A recent meeting devoted primarily to magnetic bearings was ROMAG'91,

organized by the University of Virginia and held in Alexandria, VA in March 1991. In

addition to considering applications in turbomachinery, some presentations also dealt with

use of magnetic suspension in vibration isolation, particularly in applications related to

space experimentation [50, 51 ], although one paper presented a digitally controlled

magnetic suspension and vibration isolation system for optical tables [52].

With regard to magnetic bearings for turbomachinery, a number of applications were

discussed, ranging from canned pumps to gas turbine engines [53] and rocket engine

turbopumps [54].

Again, considerable emphasis was placed on control aspects, with papers devoted to

the effects of sensor location [55], effects of amplifier design [56] and the general

controllability of flexible rotors [57].

Subsequent meetings have explored a number of these aspects in greater detail. These

include the Third International Symposium on Magnetic Bearings [58], and Mag' 93 [59].

While the papers in these meetings address progressively more sophisticated control

strategies, in much of the work presented, variations on a one-dimensional force model are

used.



2. TECHNICAL FINDINGS: Analytical/Numerical Modeling

The objective of the modelling is to calculate the force exerted by the magnets on a

journal in the case of steady currents through the coils. The techniques needed for this

computation can also be applied to calculation of force in the dynamic case if the problem is

assumed quasi-static in a magnetic sense. It is expected that this will be appropriate in

most magnetic bearing applications, since the principal requirement for this assumption is

that the frequencies of current and field variations do not approach radio frequencies.

Some correction may be necessary to account for eddy current effects, which are neglected

in the present work, if these methods are applied to the rotating shaft case.

The results of this section are also described in the Ph.D. thesis of Xia [60].

2.1 Fundamental Principle

The principle of force calculation is that the force component in a given direction is

equal to the negative of the rate of energy change with respect to that coordinate, that is,

Fx - _SU (2.1. la)
5x

Fy =- 5U (2.1.1b)
_Sy

where the energy U is the energy associated with magnetic flux density contained in the

magnetic circuit

(2.1.2)

where B is the magnetization and H is the magnetomotive force. If the linear

approximation is made that B = _t H, then this may be written.

U- _fV B2dV (2.1.3)

Development of the force model proceeded in two stages. The first method that

was developed considered only the energy in and near the air gaps, approximating the

metals as infinitely permeable. This method is referred to subsequently as the air gap

method. It does account for nonuniform gap geometry as well as nonuniform distribution

of flux within the gaps. The second method, referred to below as the full magnet method,

includes the energy in the metal of the magnet and a portion of the rotor as well as that in

the gaps and nearby air regions. Nonlinear magnetization functions can be considered as

long as they are single-valued.
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Bothmethodsrely ontwo-dimensionalfiniteelementcalculationsof flux

distributions.Computationsareperformedfor onemagnetatatime,andinteractionsof

flux loopsof individualmagnetsareneglected.

2.2 Air Gap Method

A computer program was written that calculates the force exerted on the journal by

a magnet having a steady current in its coils. The force is found by calculating the energy

stored in the air gaps between the magnet and the journal, then performing a numerical

perturbation to obtain a central difference of the energy change per unit position change.

This gives the force in the direction of the perturbation.

The force for a magnet at an arbitrary location can be calculated. The calculation

includes the following assumptions:

i. The permeability of the metal is infinite compared to that of the gaps, which is

assumed equal to that of free space. This implies that all the energy is stored in

the gaps.

ii. There is no flux leakage, but expansion of the flux lines beyond the gap edges

is allowed.

iii. The coil current, therefore the MMF, is constant over a perturbation.

In an isotropic domain not containing currents, where time variations are only of

low frequency, the magnetic field can be represented as the gradient of a scalar field _(x,y).

The energy contained in the domain is given by Equation (2.3) above where the

flux density B is given by

= - V, (2.2.1)

and the potential _ satisfies the governing equation

V2_ = 0 (2.2.2)

with the boundary conditions

_9_ 0 on free boundaries
3n

and, because of assumption (i) above

= _l on pole face 1

= _2 on pole face 2

= 0 on journal surface

as shown in Figure 2.2.1.

(2.2.3)

(2.2.4)



(I) 2

Figure 2.2.1 Boundaryconditionsfor numericalsolutionof magneticpotential.
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Initially the boundary values of_ on the pole faces, O1 and _2, are not known,

but must be determined in relation to the datum of _=0 on the journal surface. The problem

is made tractable by the fact that the governing equation is a linear one, so that the values of

internally are determined within a multiplicative constant even for an arbitrary choice of

boundary condition values. The fact that the flux must be the same through the two gaps
allows the ratio

_c = _2 (2.2.5)

to be determined. Then the fact that the difference between the two potentials is the

magnetomotive force,

_1- _2 = _ (2.2.6)

allows determination of the actual surface potentials. The variables are nondimensionalized

so that OI = 1. The procedure is as follows:

a. At an unperturbed position A, start with _1 = 1, _2" = 1. An asterisk

represents an initial guess or a calculated value based on an initial guess.

Later the ratio

1_- _2_ cI_2

• 1 _2

will be found.

b. Solve for the distribution of _ in each gap based on these boundary

conditions: _1, _b2*. Note that _)2 = 1<(_2".

c. Calculate the resulting flux density distributions and the energy stored in

each gap, plus the flux through each pole face

yl=I A -_bl dAa_- (2.2.8)

i

(2.2.7)

*Ia-ag ,72 = _dA = --)'2
an

2

(2.2.9)

d,

Since the actual dimensionless fluxes are the same magnitude ( 71 = -72 ),

is uniquely determined as the ratio

71
_: = -- (2.2.10):¢

3'2
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e, The potential distribution in gap 2 is given by _2 = K_2* and the flux

density is related to the * distribution by the same ratio. The energy is

therefore given by

2 _
(_2=K 0 2 (2.2.11)

f. Note that the imposed mmf is the difference between the pole potentials

= (I) 1 - (l) 2 = (1 - _)_1 (2.2.12)

or, since _1 = 1,

= (1 - K) (2.2.13)

(If dimensional values are needed, the factor (1 - _ ) is also the ratio

between mmf in amp-turns and the dimensional potential on pole face 1).

For now, use the nondimensional 4.

g. At a perturbed position B, start with (1)1" = 1, (1)2"* = 1. The potential

on pole 1 is now a guess, since only the mmf was maintained constant

during the perturbation. (I)2 ** is a "double" guess because it is based on

(I:)1*

h. Use a procedure analogous to steps b through f to find the ratio

_,=_2 (2.2.14)

Use the calculated mmf _ from step f above, which is still equal to the

difference between the pole potentials, to write

and define

_1 = ! (2.2.15)
l&

O_ - (I)1 - CI)2 (2.2.16)

(I) 1 (I32

j. Using the logic of step e

2 _
O1 = Ot 01 (2.2.17)

and



14

24 2 **
02 =C/, /_ 02 (2.2.18)

k. Stored energies have now been calculated at position A and position B. A

forward difference analogue to the force in the direction from A to B is

therefore

FA B = (O'1+O2)B - (O1 +O2)A (2.2.19)

AXAB

I. To return to dimensional values, use the factor (1-_:) from step f above.

Although the description above uses a forward difference, a better result is obtained

using a central difference, which is the method actually employed. This requires 4

perturbations to find the vector components of force in the x and y directions.

Although the calculation of forces with the inclusion of three dimensional effects,

flux leakage and hysteresis will involve significantly more computations, the overall

approach should be the same as that used above. It may be necessary to use a vector

magnetic potential, and the assignment of boundary conditions will be considerably more

complex, however.

2.3 Air Gap Method: Computer Program

The algorithm above is embodied in a FORTRAN computer program, GAPFOR 1,

which uses the finite element method for calculating the magnetic potential in two

dimensions. For a given journal position the program calculates the gap height as a

function of angular location and generates a finite element mesh for each gap. Flux

fringing is allowed by extending the finite element domain beyond the edges of each pole

face. Then the journal position is perturbed four times, first with positive dx and negative

dx, then with positive dy and negative dy. At each step the mesh is regenerated and the

energies are recalculated.

To achieve rapid computational speed and efficiency, a dedicated finite element

program was written for this application. It includes a grid generation routine as well as a

banded gauss elimination solver for the assembled equations. A listing of the algorithm is

given in Appendix A.
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2.4 Air Gap Method: Results

2.4.1 Test Case 1: parallel surfaces

The algorithm was tested by calculating the force in the case of a magnet and part

having parallel faces, with no flux fringing allowed, shown in Figure 2.4.1. In this case

an analytical expression approximates the force per unit depth of pole face as

F _g Ag N 2 i2= (2.4.1)

where F = force

I-tg = magnetic permeability of the gap
Ag = area of the gap

N = number of magnet coils
i = current

h = gap height

The computer program was run for the slightly different case of an annular clearance

between a shaft and a magnet, corresponding to the case of a centered journal. For the

sample case the equation gives F = 22.4 N, while the program predicts F = 20.9 N.

2.4.2 Test Case 2: Effects of element size and fringing

The algorithm was used to calculate the force from a single magnet acting on a

journal, as in the experimental apparatus. The dimensions are given in Table 2.4.1. The

effects of variations in element size were examined along with the effects of allowing

fringing to occur by extending the domain of solution circumferentially beyond the ends of

the pole faces as shown in Figure 2.4.2. Table 2.4.2 shows the results of these variations.

The column A displays results without fringing, while column B shows results with

fringing allowed in a domain extended 10% of the width of the pole face to either side.

The results indicate that without fringing, the effect of decreasing the element size is small,

but when fringing is to be accounted for, the element size is a significant parameter. The

results of column B suggest that when fringing is allowed, the predicted force is smaller

than when fringing is not considered. This might be expected, since fringing decreases the

average flux density by increasing the volume of the energy storage area. Since the energy

is related to the square of the flux density, an overall decrease in stored energy and in force

seems appropriate.

2.4.3 Forces from one magnet of a bearing

The computer program has been used to predict the forces from one magnet acting

on the journal at various positions of the journal within the clearance space. Half of the

entire clearance space is mapped, since all positions of the journal with respect to a single
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0.76 mm .__(0.03 in.)

magnet

113.6 mm

14 --

19.05 mm

(0.75 in.)

current: i=l A

turn" N=200+200

magnetomotive force: mmf=400 turn-A

Analytical solution for a flat surface

by approximate equation

Fy=22.4 N (5.04 lb)

Numerical solution for annular clearance

Fy=20.9 N (4.70 lb)

Figure 2.4.1 Comparison of numerical and approximate analytical solutions for one
magnet.
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_L magnet / EEID

n=10 circumferential divisions

m-5 radial divisions

AX=0.2X

( to allow fringing)

rotor

Figure 2.4.2 Sample grid (radial dimension exaggerated).

Pole depth 10.1 mm

Pole width 13.6 mm

Gap height 0.76 mm

Anglebetween poles 40 o

MMF 400 A-T

0.750 in

0,534 in

0.03 in

Table 2.4.1 Parameters for sample calculations.
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magnet can be represented in terms of positions in this half space. Figures 2.4.3 and 2.4.4

show maps of force versus x,y position. The magnet is the upper vertical magnet, and a

steady

Attraction Force from

Case m n elements

1 8 20 320

2 8 70 1120

3 8 150 2400

One magnet Using Finite Simplex Method

Design Parameters:
R= 38.1 mm
c = 0.76 mm

L = 19.05 mm

01 =60°, 02=80 °' ot=20 °

A B

No Fringing With Fringing
global matrix Fy Fy

189 x 11 20.925 21.220

639 x 11 20.927 20.635

1359 x 11 20.927 19.881

Table 2.4.2 Effects of element size and fringing

current of 1 ampere through the coils is used. The dimensions and other parameters are the

same as those of the experimental apparatus described below. The figure indicates that the

force in the y-direction varies between 0 and 132 N as the journal is moved along the y

axis. When the journal is also given an x-direction eccentricity, the y-force decreases

significantly. Except at x=0, there is also a small x component to the force, shown in

Figure 2.4.4.

In a subsequent section the predicted forces are compared with those measured in an

experimental apparatus.

2.5 Full Magnet Method

Unlike the previous method the present section considers the magnetic flux within

the metals in addition to that in the air gaps. This allows the examination of effects such as

local magnetic saturation of the materials and residual magnetization. This approach

presents two categories of difficult problems, however. The first category arises from

consideration of finite permeability, which in the general case is a nonlinear and

multivalued function of field intensity. The second is related to boundary conditions on

magnetic field quantities, and a third concerns the source, or current density, term of the
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FY

]32

99

66

SUSPENSION FORCE FY(N)
IR=l.5 INCtt C=003 1NCI] MI_F=2OO-t-200 'r-A

XB=X/C yB=Y/C

I

/

3, /

O.ql

o. _0.32
x/c

O. 6q

-0.32

0,00

y/c

0.6q

Figure 2.4.3 Vertical force of attraction from upper magnet with 1A current, by numerical
calculation.
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SUSPENSION FORCE FX(N)
R=1.5 INCHC=0.03 INC|I MMF=200+200 T-A

XD=X/C ¥D=¥/C

FX

3.00

2,25

i .50

0.75

0.00
0

0.00

y/c

Figure 2.4.4 Horizontal force of attraction from upper magnet with 1A current, by

numerical calculation.
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governingequations.Firsttheformsof thedifferentialequationswill bepresentedand
thenapproximationsandassumptionswill be introducedto simplify theequations.

2.5.1DifferentialEquationsin 3-D

In thegeneralthree-dimensionalcase,theflux densityB, thefield H andthe
currentdensity] are related by

where

7 x H = J (2.5.1)

= gfi (2.5.2)

V.B = 0 (2.5.3)

_t = _fi,t) (2.5.4)

Assuming that a solution for B in all parts of the domain can be found, the method

of force calculation described in Section 2.1 can be applied.

2.5.2 Two-dimensional Equations

For the next phase of the analysis, the solution domain is simplified from three

dimensions to two dimensions. Successful finite element solutions for magnetic flux have

been obtained in two dimensions (Chari and Silvester [61 ]) for cases of single valued

permeability by making use of Equation (2.5.3) to write the flux density, or magnetization,

vector as the curl of a vector magnetic potential

= v x X (2.5.5)

This equation is valid in three dimensions, but is more easily applied if the magnets and

rotor are treated as infinitely long and the current is assumed to pass only in the coils of the

magnets. Under these approximations both the vector potential and the current density

have only one component (z), and Equations (2.5.1), (2.5.2) and (2.5.5) can be combined

to write

32A 32A
-- + -- = I.tJ (2.5.6)
3x 2 3y 2

where A and J are magnitudes of the corresponding vector quantities. For given _ and J

distributions and appropriate boundary conditions, this Poisson's equation can be solved

by finite difference or finite element methods. In the present work the current density is

assumed uniform within the coil windings and zero elsewhere. The coils are treated as

isotropic solids, as shown in Figure 2.5.1.
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Current density J

Current density -J

Figure 2.5.1 Modelling of coils with uniform current density
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At thispoint thetwomostdifficult problemsarise;determinationof permeability
andassignmentof boundaryconditions.

2.5.3Permeability

In general,thepermeabilityof aferromagneticmaterialisanonlinear,multivalued

functionof field intensityand,throughthehistoryof thefield strength,of time. The

magnetizationof thematerialis oftenrepresentedby thehysteresisloop(a)of Figure
2.5.2,adaptedfrom Cullity [62] whichshowstherelationshipbetweenH andB for a

particulartimevariationof H, namelyacycliccompletelyreversedvariationthatis

sufficientlystrongto causethematerialtobesaturatedalternatelyin bothdirections.

Althoughthis figuregivessomequalitativeinsightinto thematerial'sbehavior,it doesnot

fully characterizetheresponseof a magnetto othertypesof timevaryingexcitations.In

fact,for anexcitationH thatdoesnot fully saturatethematerial,thecurvetracedby theB

functionmight takeoneof severalotherformsshownin Figure2.5.2,dependingon the
materialandtherangeof H.

For analyticalpurposes,it is mostconvenientto assumealinearvariation of B with

H, or a constant permeability ((a) of Figure 2.5.3). For this assumption the solution of

Equation (2.5.6) is straightforward and obtainable by a direct method. Next in complexity

is the consideration of B as a nonlinear but single valued function of H, as in (b). An

iterative method is now required for the solution. In addition, the calculation of the energy

in the magnetic field, Equation (2.1.2), requires integration using the actual magnetization

function. The most general case, that where B can take on an infinity of values,

depending on the history of H, is not considered in the present work. Therefore, in this

report calculations are limited to single-valued functions of B vs. H.

2.5.4 Boundary Conditions

Far away from the magnets and rotor it is reasonable to assume that the magnetic

flux intensity B is zero, which implies that

3A 3A
-- = -- = 0 (2.5.7)
_x Oy

It is feasible to extend the solution domain far enough to approximate this condition.

Numerical studies of the effects of domain size were made as part of the analysis, and it

was noted that the penetration of magnetic flux into the rotor is limited. A sample

discretization is presented in Figure 2.5.4, where the boundary conditions given by
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Figure 2.5.2 Possible B-H loops in a real ferromagnetic material.
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Figure 2.5.3 Alternativemodelsfor magnetizationcharacteristic.
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Figure 2.5.4. Exampleof modifieddirectdiscretizationof portionof domain.



Equation (2.5.7) are applied at an inner and an OUter radius, as well as on the radial linesdefining the edges of the doma/n.

2.5.5 Discretization

Parametric studies (Table 2.5. I) using the linear FEM solution of Section 2.3

indicate that in the linear case a discretization approximately as fine as 4 X 30 (240

elements) is needed in each gap to ensure that the force is not significantly affected by the

grid size. In the nonlinear case an even finer grid may be needed to capture the distribution

of flux near the metal surfaces. The region in and near the gap will require the most finely

spaced grid and thus the bandwidth of the global matrix is largely determ/ned by the gap

spacing. Since the OVerall domain is large it is important to use a minimum number of

elements in the gap. The principal difficulty is in numbering the nodes of the fine grid in

the gap region so that connectivity is established between the fine grid elements and theadjacent Coarser grid.

There are three primary considerations in choosing a discretization method: versatility

in modelling different geometries; efficiency in COmputation; and ease of use. The easiest

method is a direct discretization Which would produce a fine grid OVer the entire annular arc

sector that contains the gap. This method results in fine discretization in non-critical as

well as critical regions, however, and leads to an unnecessarily large bandwidth. SOme

modification of this method may be used, as indicated in Figure 2.5.4, but the difficulty in

automating the node numbering for optimized COnnectivity appears severe. Several more

advanced methods from published literature Were examined. These include automatic

methods based on curvilinear Coordinates as described by Ziekiewicz and Phillips [631 , or

the SUperelement method of Liu and Chert [64]. An automatic variable density method

described by Cavendish [65], illustrated SChematically in Figure 2.5.5, allows the User to
specify the grid density in different regions. This may be the

methods, but it requires Complex programm/ng most flexible of the available

to be fully automatic (manual intervention

was required in generating Figure 2.5.5). Methods of automatic bandwidth reduction by
node renumbering [66] may be applied to one of the simpler methods to make it

COmpetitive with a COmplex scheme such as that of Cavendish.

In terms of the OVerall solution algorithm for COmputation of flux, it was decided to use

the direct iteration method for determ/nation of the distribution °fpermeability in the

metals, regardless of the specific type °fpermeability model to be Used.

Two options Were Considered for the actual force calculation. One is based on the

method already Used in the linear FEM Case; that is, a set of direct perturbations of the shaft

27
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n=20
I=IA

x= 0.0 in.y = -0.024 in. m = 6
Extra boundary.20 %

i0 % with the fine elements

within the pole area

Difference between the largest

and smallest forces
m x n Force (N)

2 X 5 7.334

2 X 15 6.557

2 X 2O 6.361

2 X 30 5.981

1.353

4 X 5 7.597

4 X 15 6.854

4 X 2o 6.729

4X 30 6.514

0.883

6 X 5 7.409

6 X 15 6.935

6 X 20 6.845

6 X 30 6.696

0.713

8X5 7.413

8 X 15 6.964

8 X 20 6.894

8 X 30 6.783

0.63

2 X 5 7.334 )

4 X 5 7.397

6 X 5 7.409

8X5 7.413

2 X 3O 5.981 1

4 x 3o 6.514

6 X 30 6.696

8 X 30 6.783

O.O79

0.802

Table 2.5.1 Divisions and parametric study of grid size effects in gap region.
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Figure 2.5.5. Exampleof variabledensitygrid afterCavendish.



.... 30

positionfollowedby calculationof theforcesbasedonchangesin energyusingacentral
differenceapproach,includingtheenergychangedueto flux distributionchangesduring

theperturbation.In thecaseof largerdomainshavingnonlinearpermeabilitythe

computationtimefor thismethodwouldbelarge. Thesecondmethod,whichwasactually

adopted,holdstheflux distributionconstantandcalculatestheenergychangedueto the

areachangesof all theelementsthataredistortedduringaperturbation.Thismethodis
muchfasterthanthefull numericalperturbationscheme,andhasbeenshown[67] to have

highaccuracy.

2.6 Results of Linear Calculations

In Section 2.2, a method was described to calculate forces using a linear method, in

which the air gaps only are treated and the flux distribution is calculated by the Laplace

equation for the scalar magnetic potential. Results of calculations using this method were

presented in Section 2.4. In Section 2.5, the linear method was extended to include

regions of differing permeabilities, using the Poisson equation for flux distribution. The

present section presents results of these calculations, along with experimental

measurements. For a description of the experimental apparatus and methods, refer to

Section 3. In that section, some of the calculations presented here will be shown again.

The work presented in this section is also described in the paper "Determination of Forces

in a Magnetic Bearing Actuator: Numerical computation with Comparison to Experiment,"

by Knight, Xia, McCaul and Hacker [68]. Only the Conclusion section of the paper is

reiterated here.

Conclusion (of Reference [68])

Calculated and measured forces in a magnetic journal bearing actuator

are presented. The calculations are based on two-dimensional finite element

solutions of the magnetic flux distribution in both metals and free space. The

measurements were made in an apparatus designed for direct force

measurement by strain gage transducer assemblies supporting a non-rotating

journal.

Comparison of numerical calculations with one-dimensional magnetic

circuit theory indicates that as the gaps are made non-uniform by the approach

of the journal to the magnet, two dimensional effects become significant and

the two methods predict different forces. At relative permeabilities above

104 , changes in permeability of the metal have little effect, but at lower
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permeabilitiesthe availableforce decreasesdramatically with decreasing
permeability.

Also predictedis that theeffectof finite metalpermeabilityis more
stronglyfelt atsmallgapsthanatlargegaps.

Thecalculatedprincipalattractiveforcesagreewell with themeasured
forceswhenarelativepermeability_r = 500is used,correspondingto highly

saturatedmaterial.Themeasurednormalforces,however,arehigherthanthe
calculatedvaluesevenwhenahighpermeabilityisused.

It seemsreasonablethat thepermeabilitydistributionin themetal is

non-uniform. Futurework is plannedin whichdistributionsof permeability
will beexamined.

After thesubmissionof thispaper,thenumericalmethodwasextendedto model

nonlineardistributionsof permeability.

2.7 Nonlinear Force Calculation

An algorithm was developed to calculate the force exerted on a rotor by a magnet,

considering the effects of a nonlinear magnetization characteristic for the rotor and magnet

material. It uses the finite element method to solve the equation for vector magnetic

potential in two dimensions. The force calculation part of the algorithm is based on the fast

solution method proposed by Coulomb [67]. There are three primary operations involved

in the force calculation: (a) modelling of the magnetization curve of the magnet and rotor

material, (b) iteration for the distribution of vector magnetic potential consistent with the

nonlinear permeability, and (c) application of the force calculation algorithm. These

operations are outlined briefly below, but more complete descriptions of the methods are

given in Appendix C.

This work is also described in a paper, "Forces in Magnetic Journal Bearings:

Nonlinear Computation and Experimental Measurement," by Knight, Xia, and McCaul

[69], presented at the Third International Symposium on Magnetic Bearings, Alexandria,

VA, July 1992, and contained in the proceedings of that meeting.

2.7.1 Modelling of Magnetization Curve

For most of the calculations presented here, the magnetization function for silicon steel

[62] has been used. Some calculations were also performed using an arbitrarily chosen

function having sharp discontinuity in slope, to assess the effects of abrupt saturation.
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Themagnetizationfunctionof thesteelis nonlinearbutsingle-valued;thatis it does

notexhibithysteresis.Thefunctionis representedbytabulardataandis approximatedby a

cubicsplineinterpolation.At field intensities higher than 1200 A.t/m, the slope of the

magnetization function is assumed to be the permeability of free space, _o. Figure 2.7.1

shows the actual magnetization data and the approximation.

For numerical calculations, a more useful representation of the magnetization function

is that of Figure 2.7.2. The reluctivity of the material, H/B, or 1/_t, is plotted versus the

square of the flux density. When this representation is used it is not necessary to calculate

the field intensity at each location for every iteration, but only the flux distribution.

2.7.2 Calculation of Flux Distribution

The distribution of scalar magnetic potential, leading to the distribution of flux density,

is calculated by the finite element method. The equation that models the potential is the

nonlinear Poissons equation

_X ,-- ,_XX +_yy _-_y-y] J (2.7.1)

where A is the magnitude of the vector magnetic potential, which in the two-dimensional

case has only one component, normal to the plane of the solution region. The flux density

is related to the potential by

B = V × A. (2.7.2)

This relationship allows a convenient representation of flux density, since it implies that

contours of constant A are also lines parallel to B.

The source term J, current density, appears in those elements comprising the cross

sections of the coils. The value of the total ampere-turns is divided by the nominal cross-

section to arrive at this current density.

An iterative method is used to obtain a distribution that is consistent with the nonlinear

magnetization function. The procedure is that recommended by Silvester [70], in which a

Newton-Raphson iteration is applied to determination of the reluctivity. An initial

approximation to the potential is made, then updated based on successive solutions of the

Poissons equation for incremental changes in the A field that result from refinement of the

reluctivity distribution.

When the flux distribution has been determined, the calculation of forces is performed

using the method of Coulomb [67], in which only the energy changes in the distorted

elements are considered during a virtual displacement. The method allows the force to be

determined without multiple solutions for the flux distribution

Appendix C describes the numerical methods in more detail.
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2.7.3 Resultsof Calculations

Calculationswereperformedbasedon thegeometryof Figure2.7.3,correspondingto

thefirst experimentalapparatusandthemeasurementsdescribedin [71]. Themagnet
underconsiderationis anupperverticalmagnet,soforcesin they-directionarethe

principalforces,andforcesin thex-directionarethenormalforces. Alsoplottedin the
figuresaretheresultsof thelinearcalculationdescribedin previousreportsandin [71].
Theeffectof saturationontheforceis seeninFigure2.7.4,whichshowstheattractive

principalforceasafunctionof thecoil current,whentheshaftis in acenteredpositionwith

respectto themagnetpolefaces.Thegapbetweenshaftandmagnetpolesis therefore
constantat0.03inch. Thedimensionlessforceis seento increasewithcurrent,andbelow

acurrentof 2.5A (correspondingto 1000A.t) theresultof thenonlinearcalculationis the

sameasthatof the linearcalculation.Abovethisvaluetheforcecontinuesto increase,but

atamuchsmallerratethanpredictedby lineartheory.

At currentlevelshigherthan3A themagnetmaterialexperiencessaturationnearthe

innercornersof theintersectionbetweenthepolelegsandthemagnetouterarc. As the
currentlevel is increased,theareaof saturationexpandsacrossthecrosssectionof the
legs. Figure2.7.5showsthoseelementsthathavebeensaturatedfor thecaseof i = 3.5A.

At this levelof MMF theareaof saturationencompassesacompletelayerof elements

spanningthecross-section.Forpurposesof thisplot, saturationis definedto correspond
to a flux densityof 1.4T. At thispointtheslopeof themagnetizationfunctionis assumed

to bethatof freespace,soabovethislevelof flux densitytheforcecancontinueto increase
with current,asindicatedby Figure2.7.4,butata muchslowerrate.

ForagivenMMF themagnetmayalsoexperiencesaturationwhentheshaftismoved

closertothemagnet.Suchadisplacementdecreasestheoverallreluctanceof themagnetic
circuit by closingthegaps,andchangesthegapshapeaswell. Figures2.7.6to 2.7.8
showtheincreasein numberof saturatedelementswhentheshaftis movedtowardthe

magnet,for theconstantcurrenti = 2.0A. Figure2.7.6correspondsto a shafteccentricity

of (X,Y) = (0, 0.5),which denotesapositionon themagnet'saxisof symmetry,half the
distancefrom thecenterto themaximumpossibleeccentricity.Therearetwoareaswhere

elementsaresaturated;theinnercornersof thehorseshoe,andthepartof theshaftnearthe

inneredgesof thepolefaces.Theseedgesarethepointsof closestproximity betweenthe
polesandtherotor. As theshaftis movedclosertothemagnettheareasof saturation

enlarge. At aneccentricityof 0.6,Figure2.7.7,theupperendsof thepole legshavebeen

completelysaturated,andtheareaof saturationattherotorsurfacehasexpanded.As the

eccentricityis furtherincreasedto0.7,Figure2.7.8showsthesaturationareascontinuing

to expand.Thecontourplot of Figure2.7.9reflectsthesaturationpattern.Comparisonof
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Schematic of geometry for calculation.
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Calculated principal force on centered shaft.
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Saturated Elements

Fp(N) Fn(N)

208.35 0.0

Figure 2.7.5 Distribution of saturated elements at 3.5A current, centered rotor.
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Saturated Elements

I x/c y/c

2A 0 0.5

Fp(N) Fn(N)

239.34 0.0

Figure 2.7.6 Distribution of saturated elements at 2.0A current, with vertical
displacement of 1/2 clearance.
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Saturated Elements

I x/c y/e Fp(N) Fn(N)

2A 0 0.6 264.84 0.0

Figure 2.7.7 Distribution of saturated elements at 2.0A current, with vertical
displacement of 0.6 clearance.
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Saturated Elements

I x/c y/c

2A 0 0.7

Fp(N) Fn(N)

289.07 8.0

Figure 2.7.8 Distribution of saturated elements at 2.0A current, with vertical
displacement of 0.7 clearance.
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Contour of Magnetic Potential

Figure 2.7.9 Nonlinear magnetic potential contours.
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Figure2.7.9andFigure2.7.10,which is thepotentialdistributionobtainedby alinear
solution,showshow theflux distributionhaschangedin orderfor theflux linesto

maintainaminimumcurvatureandtofollow theeasiestpath,whileminimizinglocal
concentrations.Theeffectontheforceis illustratedin Figure2.7.11,wherethenonlinear

calculationiscomparedwith thelinearsolutionusingarelativepermeabilityof 5570

(correspondingto thatof siliconsteelat verylow field intensity).Aboveaneccentricityof
0.4,theforcecontinuesto increase,butat amuchlowerratethanpredictedby linear
theory.

Asymmetryin thedistributionof saturationdevelopswhentherotor isgivenan
eccentricityawayfrom themagnet'ssymmetryaxis. Figure2.7.12showsthesaturation

patternwhentheshaftis movedto theright, to aposition(0.45,0.7),a largeeccentricity.

Therotorneartheinnercornerof theleft legis saturated,aswell asalmostanentirelayer

of elementsneartheright leg. Thesaturationregionattheupperendsof the legshasalso
changedslightly from thatof Figure2.7.8. Figure2.7.13ashowsthepotentialdistribution

for thiscase.Comparisonwith Figure2.7.13b,which is thepotentialdistributionobtained

by alinearsolution,illustratestheeffectof saturationin excludingsomeof theflux from
thecornersandincreasingthefringingat thepoles.

Theforcein thenormaldirectionis plottedin Figure2.7.14for onevalueof off-axis

eccentricity,asafunctionof they-position(alongthesymmetryaxis). This forcealsois

predictedto deviatefrom thelineartheoryaboveay-displacementof 50%of theclearance.

Theratioof normalforceto principalforcefor thissamenormaleccentricityisplotted
in Figure2.7.15. Curvesareshownfor thenonlineartheoryaswell asfor thelinear

theoryat twodifferentrelativepermeabilities,in additionto theexperimentalresults.

Althoughthenonlineartheorydoesnotreflectthemagnitudesof theratioveryaccurately,
thetrendis appropriate:thenonlineartheorydoesindicateaveryslightincreasein this
ratioastheeccentricityis madelarger. Themagnitudeof thedifference,however,is so
smallthatit maynotbesignificantin viewof thenumericalsolutionmetl-,od.
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Contour of Magnetic Potantial

I_=5570

Figure 2.7.10 Linear magnetic potential contours.
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Figure 2.7.11 Principal force as a function of the principal coordinate.
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Saturated Elements

I x/c y/c Pp(N) Fn(N)

2A 0.45 0.7 283.213 8.714

Figure 2.7.12 Distribution of saturated elements at large eccentricity with normal

component.
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Contour of Magnetic Potential

I x/c y/c

2A 0.45 0.7

Figure 2.7.13a Nonlinear magnetic potential contours at large normal eccentricity.
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Contour of Maffnetic Potential

_=5570

I x/c y/c

2A 0.45 0.7

Figure 2.7.13b Linear magnetic potential contours at large normal eccentricity.
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2.8 Effects of Uncertainties and Property Variations

In earlier results, numerical calculations of forces using the nominal geometry of

the experimental apparatus did not predict accurately the magnitudes of the normal forces.

The measurements were in all cases considerably larger than predicted by calculation.

Recent calculations have attempted to address the issues of uncertainty in the pole face

geometry on the forces. The nominal geometry of the apparatus is shown in Figure 2.8.1,

along with one possible type of geometric error. Suppose that each of the pole faces, while

still consisting of a circular arc, is rotated a small amount from its nominal orientation.

This rotation is distinct from the angular uncertainty described in section 2.2 above. This

type of error, or an error of similar magnitude, might result from tolerances in machining,

but would be unlikely to result from assembly errors.

Figures 2.8.2, 2.8.3 and 2.8.4 show the results of several series of calculations.

Each figure is based on the same set of shaft positions and presents the force from one

magnet when the shaft has a large normal eccentricity, as a function of position on the

principal coordinate. These data are most easily compared with data from the first force

measurement apparatus, because of the sequence of measurements. The four curves

illustrate the effects of two different magnitudes of error in pole face orientation, 0.5 ° and

1.0 o. These correspond to movement of the outer corner of each pole face a distance of

0.004 inch or 0.009 inch toward the shaft. A change of 0.5 o therefore represents 15 % of

the radial clearance. The effects of these changes on the calculated forces is shown for the

case using the nominal magnetization function for the material, with a saturation flux

density of 1.4 T (curves 1 and 4), and for the case using a saturation flux density reduced

by 20 %, to 1.14 T. As a reference, the result for the linear calculation with no error in

pole face geometry is included.

It is seen that the effect of this geometry change is to increase both the principal and

normal forces, with a larger angular change causing larger forces as long as the nominal

saturation flux density is maintained. The ratio of normal to principal force also increases.

For an angular error of 1o, the ratio of forces has approached the ratio that was measured

When the calculation is performed using the lower value of saturation flux density,

however, the result is similar up to the point where saturation is felt, then the ratio between

the forces decreases with increasing principal coordinate. It is reasonable that a

combination of geometric error and saturation flux density level can produce the force ratio

observed in the experiment.

experimentally. In contrast to the experiment, however, the ratio shown in Figure 2.8.4

increases with principal coordinate, while the measurement does not indicate this trend.
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Figure 2.8.1 Schematicof possibleerrorin polefaceorientation.
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2.9 Conclusions (Analytical/Numerical)

Principal conclusions drawn from this phase of the work are: (I) that the distribution

of saturation in the magnet core and the rotor influence both the principal attractive force

and the force in the normal direction, (2) that the normal force measured experimentally is

several times as large as the magnitude predicted at present by either linear or nonlinear

theory, but that (3) the trend of nonlinear theory to predict larger normal forces in relation
to principal forces is appropriate.
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3. TECHNICAL FINDINGS: Experiments

Two different types of experimental apparatus were constructed to measure directly

the forces exerted between magnets and shaft in the nonrotating case.

The first apparatus was made using a solid disk to approximate the rotor, and solid

core magnets. This apparatus made use of strain gage instrumented support arms for the

disk in order to measure the force directly.

The second apparatus was made with laminated disk and magnets, and used the

principle of a calibrated deflecting beam to measure the forces indirectly.

Measurements of force on a stationary, non-rotating shaft were made as functions of

position and current and the forces have been compared with corresponding numerical

predictions. Where appropriate, measurements from the two rigs were also compared, and

were found to be consistent with each other.

These apparatus and results are also described in the M.S. thesis of E. McCaul [72].

3.1 Magnet Apparatus I

Table 3.1.1 lists the design parameters of the apparatus for direct force measurement,

Figures 3.1.1 and 3.1.2 show schematics, and Figure 3.1.3 shows an exploded view.

Rotor o.d. 0.076 m 3.00 in

Support shaft o.d. 0.016 m 0.625 in

Support shaft length 0.15 m 6.0 in

Magnet i.d. 0.0777 m 3.06 in

Magnet depth 0.019 m 0.5 in

Shaft clearance (diam) 1.52 mm 0.06 in

Pole width 0.013 m 0.5 in

Leg length 0.019 m 0.75 in

Coils 200 turns/leg, #22 copper

Pole separation angle 40 °

Magnet centerlines 0 ° 90o 180 ° 270 °

Table 3.1.1 Design parameters of experimental apparatus I
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The magnets and the journal are cut from disks of solid 1020 steel. They are placed

between two side panels that are laminated from 1/16" aluminum pieces. The magnets are

held in place by locating pins that are press fitted into through holes. The hole positions

were located prior to the cutting of the magnets from the solid disk. In this way careful

control of the radial clearances and angular positions of the magnets was maintained.

Each magnet is independent and is wound with 400 turns capable of carrying current of

2.0 A in the steady state. The original design based on a sandwich construction was

intended to allow flexibility in mounting magnets of different materials. In the steady force

measurement mode, the rotor is held stationary by pressure from six micrometer heads

(three on each end) that are in turn held by cantilever arms instrumented with strain guage

bridges. Thus all mechanical force on the rotor passes through the strain guage arm

transducers, and ideally all of the force on each micrometer tip is purely radial. In fact, it is

likely that the transducer arms exert some force in the tangential direction because of static

friction between the pusher tip and the support disk. Such force would not be sensed by

the transducers, which are designed to measure only forces that cause bending moments.

Attempts were made to minimize any frictional force by adding Teflon ball sockets with

steel spheres between the pusher micrometers and the support disks.

Despite the difficulties encountered, a number of successful force measurements were

made and useful conclusions have been drawn. Measurements from the second apparatus

tended to confirm those of the first.

3.1.1 Method of Measurement

Measurement of the force at a given location x,y within the clearance space requires

several steps:

i. Establish a datum position relative to the magnet from which the force is to be

measured. This requires placement of the rotor in contact with the magnet along

the inner corners of the pole faces. Visual alignment of the rotor is followed by

application of a small steady current to the magnet to assure contact. The datum

readings are then taken from the eddy current probes located at 45 ° to the vertical.

Ideally, one datum would be sufficient for all positions and all magnets, but in

reality because of machining tolerances and assembly allowances, the magnet

pole faces are not located on a perfect circle. Measurements can only be made

relative to one magnet at a time, therefore, and a separate datum is required for

each magnet. This datum can be used for all positions relative to this magnet.
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ii. Placetherotor in thedesiredpositionby adjustingthemicrometerpushers,

repeatedlycomputingthepositionfromtheprobereadingsandcorrectingas
necessary.Whentherotor is in position,all strainguagearmsshouldbeundera

slightpreload.
iii. Takereadingsof thestrainguagevoltageswithoutcurrentthroughthemagnets.

Thesewill serveasdatumvaluesthatcontainall preloadsincludingtherotor

weight.
iv. Apply thedesiredcurrenttothemagnet.Takereadingsof thestrainguage

voltagesandthepositionprobereadings.
v. Computethepositionfrom theprobereadingsandtheforcesfrom thestrain

guagevoltagesaftersubtractingthedatumvalues.
vi. Apply analternatingcurrenttothemagnetcoilsto removeresidualmagnetization

andreturnto stepii.
Theintentwasto automatetheentireprocessof datatakingandforcecalculationby

usingamicrocomputeranddigitaldataacquisition.Difficultieswith thecommercialA/D
hardware,however,forcedtheuseof manualdatatakingfor thisphaseof thework. The

rawoutputsfrom thestrainguagesandpositionprobesareprocessedusingthesametype
of softwareasthatintendedfor theautomatedprocess,but thedatawereenteredmanually.

3.2 Results of Measurements, Apparatus 1

Forces were measured at several locations and for several values of steady current.

The figures referred to below display dimensional data as measured, with forces in

Newtons plotted against y/c, the eccentricity ratio in the vertical direction. All of the forces

measured in this apparatus are from the lower vertical magnet, so the vertical forces are in

the negative y-direction. The eccentricities in the x-direction are all positive. Three

traverses of the y-direction were made, at x/c positions of approximately 0.0, 0.24, and

0.45. Assessments of the errors in measurement are not complete; however, it is expected

that the error in position measurement is no greater than plus or minus 0.05 in y/c and x/c,

and that the error in force measurement is no greater that plus or minus 5 N. Errors in

current level control are within 0.1 A. A larger series of measurements that were made

before the addition of the ball/socket contacts was eventually discarded because the

measurement error due to friction appeared to be significant.

The data support some of the anticipated relationships among the position, current and

force variables but appear to disagree with other aspects of the present theory. Figure

3.2.1 shows the vertical force as a function of y/c for several values of current. The force
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tendsto increaseroughlyastheinversesquareof thegap.Themagnitudesof theforces,

however,areconsiderablylowerthanthosepredictedeitherby thelinearfinite element

theoryorby thetraditionaltheorybasedonassumptionof uniformgaps,andtheratio
betweenmeasuredandpredictedforcesis notconstant.Figure3.2.2is acomparisonof

themeasuredforceswith thosepredictedby thefinite elementcalculation.Theresults

indicatethatatlargegapand/orsmallcurrenttheratiobetweenthemeasuredandpredicted

forcesis about1.5,butat smallergapsand/orhighercurrentsthisratio increases,

eventuallyexceeding2.0for all thethreevaluesof currentthatareplotted.
Severalmechanismsmaybeoperatingto causethesediscrepancies,includingflux

leakage,non-uniformpermeabilityof thematerialsandmagneticsaturation.Somepartof

thedisagreementis likely theresultof measurementerrors,but thedifferencesappearto be

significantevenafterallowingfor reasonableexperimentalerror. Thesedisagreements
reinforcetheneedfor additionalworkon forcecalculation.

Thelinearfiniteelementtheorypredictstheexistenceof forcesfrom amagnetthatare

normalto its axisof symmetrywhentherotoris displacedfrom thissymmetryaxis,but the

forcesthataremeasuredareconsiderablystrongerthanthosepredictedby calculation.

Figure3.2.3showsthex componentof forcewhentherotor isplacedascloselyas

possibleon they-axis. Thenormalforceappearsto besomewhatstrongerathigher
currentlevelsbut all theseforcesaresmall,ontheorderof 5 %or lessof theprincipal

force,soit isdifficult to attributemuchsignificancetothisratioin view of theexperimental

uncertainty.At highervaluesof x/c,however,thenormalforcebecomesmuchmore

significant. Figures3.2.4through3.2.7showtheverticalandhorizontalcomponentsof
forcewhenthex/cvalueis 0.24or0.45,andFigure3.2.8showsthevalueof thex force

asafunctionof positionfor severalvaluesof x/c whilethecurrentis heldconstantat 1.0

A. In generalit appearsthatthenormalforceincreasessignificantlywith increasingx/c,
andat x/c= 0.24and0.45thehorizontalforceis about10%of theprincipal force.

Theorypredictsaratioof about3 %to 5 %.
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An aspect of the measured forces that was not anticipated is the lack of degradation of

principal force as the rotor is moved off the principal axis. Numerical calculations predict a

significant decrease in the principal force under these conditions, but the measurements do

not support this prediction. Figure 3.2.9 indicates that within measurement uncertainty

there are not significant differences in the y-components of force at the three different

values of x/c. A possible cause is that a self-correcting redistribution of flux along the pole

faces occurs that allows the force to be maintained. The present theory assumes that the

magnetic potential along the entire surface of each pole face is uniform. The mechanism of

potential and flux redistribution should be studied further.

In summary, the general trends of the measured y-forces agree with the predictions of

the theory while the magnitudes of forces are somewhat smaller than those predicted.

Other aspects of theory are not confirmed by the measurements. The measured forces in

the x direction appear to be significantly larger than those predicted by theory when the

rotor has an x eccentricity. Also, the y forces do not appear to decrease significantly when

the rotor is given an eccentricity in the x direction. These effects appear to be significant

even after considering experimental uncertainty, and both of these phenomena were judged

to warrant further study.
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3.3 Measurement Apparatus II

Measurements of forces exerted by a magnet on a stationary, non-rotating rotor were

made using a second apparatus that relied on a different measurement principle.

The magnet cores and the shaft are constructed of 0.014 inch laminations of silicon

steel M15. Each magnet is wound with a total of 400 turns of#22 wire, arranged in two

coils, one on each pole leg. The nominal dimensions of the magnets are the same as those

of the first apparatus, which was of solid material, but the effective cross section is smaller

in the new apparatus because of the laminated construction. At present its value has not

been determined.

3.3.1 Deflecting Beam Apparatus

Figure 3.3.1 is a schematic of the apparatus for force measurement. The shaft is

clamped at each end in two large pedestals that are fixed to a solid base. The magnets are

assembled in a retaining shell and the entire magnet assembly is mounted on a slide

mechanism allowing movement in the horizontal direction. The slide is mounted in turn on

a laboratory jack that allows the assembly to be moved vertically. Thus the bearing

assembly can be moved in two directions and positioned accurately with respect to the

fixed shaft. The relative position of the bearing is measured by four proximity probes

oriented at 45 ° to the vertical. These probes are connected to the bearing housing so they

always measure the relative displacement of the rotor from the center of the bearing

regardless of the deflection of the rotor support beam.

When one or more of the magnets is activated, the force causes a deflection of the

beam from its static position. The components of this deflection in the vertical and

horizontal directions are measured by a separate set of proximity probes that are connected

directly to the base of the apparatus. The intention was to place the support beam in the

pedestals to approximate the perfect clamped-clamped case, so the stiffness of the beam

would be equal in all directions and could be calculated from simple beam theory. After

assembly it was found, however, that manufacturing tolerances resulted in unequal

stiffnesses, so the force vs. deflection relationship was directly calibrated independently in

both directions. Although the deflections were different in the two directions, the

relationships were linear over the range required for measurements, so the calibrations

yield a constant horizontal and a constant vertical stiffness.
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3.3.2 Measurement Method

Before conducting any force measurements, the location of the bearing center is

determined by noting the readings of the position probes when the shaft is placed against

the pole faces of the magnets and interpolating to find the center. Also, the undeflected

shaft position is noted.

To measure the force at a particular current level, the magnet/rotor assembly is first

degaussed using alternating current in the coils of the magnet, with peak amplitude of at

least twice the highest current used. To avoid destructive vibrations while degaussing, the

shaft is rigidly fixed relative to the magnets by using a temporary clamp. The magnets are

then activated and the proximity probe outputs are read to determine the final shaft position

relative to the magnets and also the absolute shaft deflection.

3.3.3 Measurements Using One Magnet

The apparatus described above was used to measure the force between a single magnet

and the shaft for a variety of positions of the shaft with respect to the center of curvature of

the magnet pole faces. Particular attention was paid to the forces when the shaft was given

an eccentricity with respect to the axis of symmetry of the magnet. Such relative positions,

which will be seen as undesirable, may nevertheless result from three causes:

misalignment of the magnets during assembly (note that this is a strong argument for

manufacture of magnets having poles attached to a continuous backing ring), from dynamic

motion of the shaft, or from errors in biasing.

Measurements were made at several levels of current in the magnet coils, and over a

range of shaft positions within the clearance space. After assembly it was found that the

magnets lacked a common center because of assembly tolerances. All the measurements

therefore were conducted using one of the side magnets. At present the numerical

calculation method described above has not been applied to the geometry of the new

apparatus, so the results presented below are measurements only. A limited discussion of

the trends of the normal forces in relation to the previous experiment as well as to the

calculations that have been performed will be attempted, however.

The results of these measurements are presented in a slightly different way from the

results of the Section 2.1 above, reflecting a different sequence of shaft repositioning from

that used in the first series of experiments. Each group of symbols corresponds to a

constant x position and therefore represents a traverse of the vertical direction (the normal

direction in this case). By executing traverses of the normal direction it was possible to
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plot theratioof normalforceto principalforceasafunctionof thedistanceawayfrom the
axisof symmetry.

In theplotsbelow,thevalueof X, or x/c, listedin the legendgivesthepositionof the
rotor alongtheaxisof symmetryof themagnet.Thelargestpossiblevalueis 1.0,but it

wasnotpossibleto approachthisvaluecloselywith thepresentdesignof theapparatus.A
discussionof possibleredesignto alleviatethisdifficulty, aswell asto achievesomeother

goals,is presentedin a latersection.Forthepresent,however,mostof thevaluesof X in

this and subsequent plots are negative, and some extrapolation is necessary to visualize

trends as the rotor approaches the magnet. Some of the values of y/c that are presented are

smaller than - 1.0, corresponding to a location so far from symmetry axis that it is outside

the clearance space. While this would not be possible in an actual design, the steady state

apparatus can accommodate such large displacement.

Figure 3.3.2 shows the measured force in the principal direction and Figure 3.3.3

shows the force in the normal direction at a current level of 1.0A (400 A.t). The principal

force is seen to be significantly larger at larger values of X, or rotor locations closer to the

magnet. The force increases slightly as the rotor is moved away from the axis of

symmetry, toward one of the poles. This trend was predicted by the original linear theory

based on gap regions only, but has not been predicted by the nonlinear theory. The

magnitude of the normal force increases strongly with an increase in distance away from

the symmetry axis. Figure 3.3.4 shows the ratio of the normal force to the principal force.

Linear fits to the data of each traverse were calculated. To avoid confusion only one fit is

shown, but the slope of this line is equal to the average of the slopes of all the fits.

Figures 3.3.5 through 3.3.16 show the corresponding results for other values of coil

currents. Similar trends are observed in all the cases. In each of the plots of force ratio a

linear fit is provided, and in each case the slope of the fit chosen is the same as the average

of the slopes of all the individual fits.

Over the ranges of position examined, the data indicate an approximately linear

relationship between the normal eccentricity of the shaft and the ratio of normal to principal

force. The constant of proportionality seems to be larger at lower currents, but for all cases

examined its value is between 0.14 and 0.17. The nonlinear theory has predicted the

existence of normal forces, but has not predicted such a large constant of proportionality

for the ratio.
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3.3.4 Measurements Using Two Magnets

The result that the normal force seems to be approximately proportional to the

product of principal force and normal eccentricity indicated that the normal forces would be

even more significant in the case of a strongly biased, opposed magnet pair, where the

principal forces are approximately balanced. To examine this possibility a new set of

experiments was conducted using two opposed magnets at the same current.

Figure 3.3.17 is a plot of the principal force exerted by the magnet pair as a

function of the normal coordinate, at several values of the principal coordinate, along the

symmetry axis. At small eccentricity, the force in the principal direction is near zero, as

expected, since the shaft is equidistant from the two magnets. As the shaft is moved

toward either of the magnets, there is a resultant force in the direction of that magnet. This

force is a relatively weak function of the normal coordinate, but is seen to be largest in

magnitude when both normal and principal eccentricities are large.

The normal forces exerted under these conditions are shown in Figure 3.3.18. The

intercept of these force plots with the axes would nominally be at (0,0), and the precise

cause of their displacement from that intercept is not yet clear, although its most likely

cause seems to be uncertainty in the angular positions of the magnets around the clearance

circle. This possibility is discussed further below, but it is felt that the magnitudes of the

forces observed in this plot remain significant after considering this uncertainty, because all

the normal forces do in fact change sign as anticipated, at some point. The magnitude of

the normal force is the same order as the resultant principal force at small eccentricities and

is significantly larger than the principal force at large eccentricities, as illustrated by the plot

of Figure 3.3.19, which shows the ratio of normal to principal force. This occurs because

the normal forces from the two magnets are additive, while the principal forces are of

opposite sign.

The displacement from zero of the intercepts of the normal forces with the axes in

Figure 3.3.19 and the locations of minima of the principal forces in Figure 3.3.17 have

been considered in terms of possible angular uncertainty in magnet placement. The

apparatus, further described in the earlier progress report, was assembled by positioning all

of the magnet pole faces against a plastic mandrel and then clamping the magnet

laminations in place. The mandrel was then carefully removed. Because of the method of

assembly, it is felt that the uncertainty in radial position of each pole face is small, on the

order of 1% of the clearance. The largest uncertainty is that of the angular position of each

magnet.
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Ideally, each magnet should be 90 ° from each of its neighbors, but in fact, assembly

tolerances may have resulted in errors of up to 3 ° from the nominal positions. This would

result in an uncertainty in orientation of the force vector associated with each magnet. Such

a 3° uncertainty would result in an increase or decrease in the normal force component of

approximately 2 % of the principal force from each magnet of the pair. Using a principal

force of 1.0 at zero of the principal coordinate, a 3 ° uncertainty in principal force

orientation would result in a change in the normal force of 0.06 nondimensional force

units. This is an uncertainty of the same order as the displacement of intercepts of the

measured normal force data from the (0,0) position in Figure 3.3.18.

If this uncertainty in angular position is the cause of the displacement of the data, it

would be expected that forces measured at other current levels would behave similarly.

Additional measurements were made at two other current levels, and indeed the data all are

displaced by approximately the same amount. These data are shown in Figures 3.3.20

through 3.3.22, for MMF of 300 A.t, and in Figures 3.3.23 through 3.3.25, for MMF of

500 A.t (each magnet). It is therefore believed that a small error in angular positioning is

present.

In interpreting the measurements of Figures 3.3.17 through 3.3.25, then, it must

be remembered that this uncertainty of angular orientation may be playing a role.

Nevertheless, the magnitudes of the normal forces are still significant. Those on the

negative side of the plots are apparently increased by the error, but those on the positive

side are apparently decreased. Therefore, it may be conservatively stated that the

magnitudes of normal forces in a magnet pair that is perfectly aligned will be at least as

large as those on the positive side of the plots presented. Under this interpretation the

normal forces are of significant magnitude. In addition, the very fact that the system is

shown to be highly sensitive to such angular errors should receive some emphasis. This

factor must be considered in designing the actuator and in determining the level of

robustness or the type of algorithms required for controlling the bearing. It is a strong

argument, in fact, for the use of magnets made with a continuous outer ring, which would

practically preclude this type of uncertainty.

The coordinate coupling illustrated in the force ratio plots has serious implications

for the design of magnetic bearings and magnetically supported flexible rotor systems

because it is primarily dependent not on the control currents, but on the bias currents.

Since it is widely believed that magnetic bearings must be biased rather strongly in order to

provide a greater degree of linearity and to improve their stability characteristics, the

coordinate coupling in these systems could be strong. In flexible rotor dynamics,
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coordinatecouplingin bearingsisregardedasanundesirablecharacteristicbecauseof the

potentialfor excitationatmultiplesof therunningspeedaswell asfor self-excitedwhirl.
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The type of coupling illustrated by these measurements would not tend to cause whirl,

because the coupling coefficients have the same sign, unlike the case of a fluid film

bearing, where the normal stiffness coefficients often have opposite signs. They would,

however, tend to cause an excitation at multiples of the running speed. This possibility

must be considered when designing magnetic bearings for flexible rotor applications, such

as gas turbines and other turbomachinery.
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4. CLOSURE

4.1 Summary of Technical Findings

Both numerical and experimental studies were done to determine the characteristics of

the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical

studies were based on finite element computations and were of three types:

(1) Calculations based only on energy stored in air gaps.

(2) Calculations including metal parts, with locally constant magnetic

permeability.

(3) Calculations including nonlinear magnetization function, with the possibility

of saturation.

Principal conclusions from the analytical/numerical studies are:

(1) The distribution of saturation in the magnet core and the rotor influences both

the principal attractive force and the normal force

(2) The computed normal force is considerably smaller than that measured

experimentally

(3) The trend of nonlinear theory to predict larger normal forces in relation to

principal forces is appropriate.

Measurements of the force versus position of the shaft were made using two

separate measurement rigs, one based on strain guage measurement of forces, the other

based on deflections of a calibrated beam. All measurements were static, using steady

currents and a nonrotating shaft. Principal conclusions from the experimental studies,

taken in conjunction with the numerical studies, are:

(4) The trends of the measured principal (y) forces agree with the predictions of

the theory while the magnitudes of forces are somewhat smaller than those

predicted. The y forces do not appear to decrease significantly as predicted

by theory when the rotor is given an eccentricity in the x direction.

(5) The measured forces in the x direction are significantly larger than those

predicted by theory when the rotor has an x eccentricity.

(6) Over the ranges of position examined, there is an approximately linear

relationship between the normal eccentricity of the shaft and the ratio of

normal to principal force. The constant of proportionality was not the same

for all cases, but its value was consistently between 0.14 and 0.17. The

nonlinear computations predicted the existence of normal forces, but did not

predict such a large ratio.
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(7) Thetypeof couplingillustratedby thesemeasurementsprobablywouldnot
tendtocausewhirl, but theymighttendto causeotherkindsof

nonsynchronousexcitation Thispossibilitymustbeconsideredwhen

designingmagneticbearingsfor flexiblerotorapplications,suchasgas
turbinesandotherturbomachinery.

Furtherworkwasconductedbeyondthenominalwork periodof thisproposal,in
whichsimulationsof 2DOFsystemswereperformedsubjectto theseforcemodels.The

results,attachedasAppendix C, show that significant nonlinear behavior can occur,

including multiple coexisting solutions, bifurcations in response as the stabilities of the

respective solutions change, and self-similarity in stability boundaries.

4.2 Documentation

In the course of this project, one master's thesis and one Ph.D. dissertation were

completed. Edward McCaul received the degree Master of Science after defending the

thesis entitled "Measurement of Forces in a Magnetic Journal Bearing" [72]. Harold Xia

received the degree Doctor of Philosophy after defending the dissertation "Numerical

Investigation of Suspension Force in a Magnetic Journal Bearing Actuator" [60].

Five interim progress reports were filed with NASA as this work proceeded

Presentations of results of the research performed under this grant were made at three

technical meetings:

1. NASA Workshop on Aerospace Applications of Magnetic Suspension at Langley

Research Center, September 1990

2. ROMAG'91 Conference on Magnetic Bearings and Dry Gas Seals, in Alexandria,

VA, March 1991

3. ASME/STLE Joint Tribology Conference in St. Louis, Missouri, October 1991

(also published in ASME Journal of Tribology) [68]

In addition, related work on nonlinear dynamic simulation of magnetic bearing

systems that makes direct use of the results obtained in this project have been presented at

three technical conferences:

1. Third International Symposium on Magnetic Bearings, Alexandria, VA 1992 [69]

2. NASA Second International Symposium on Magnetic Suspension Technology,

Seattle, WA, August 1993 [73]

3. ASME International Gas Turbine and Aeroengine Congress, The Hague, 1994

(also published in ASME Journal of Engineering for Gas Turbines and Power) [74]
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APPENDIX A - PROGRAM FOR FORCE CALCULATION USING
AIR GAPS ONLY

css$$$$$$$$$$S$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$ s
$
C

C GAPFOR SEPT. 1990
C

C THIS ALGORITHM CALCULATES THE MAGNETIC SUSPENSION FORCE FOR A

C MAGNETIC JOURNAL BEARING ACTUATOR. THE CALCULATION REGION
INVOLVES

C THE AIR GAP BETWEEN THE MAGNET POLE-FACES AND THE ROTOR WHERE THE

C MAGNETIC FIELD IS DOMINATED BY LAPLACE EQUATION. MAGNETIC FORCE

C IS DETERMINED BY USING VIRTUAL WORK PRINCIPLE.
C

cSSSSSSSS$$SSSSSSSSSS$$$SSSSS$$S$$$S$$S$$$SSSSS$$$SSSS$$S$$SSSSSSSS$$$$
$
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

INPUT

LINEI-TITLE

LINE2- E: ECCENTRICITY OF SHAFT CENTER

C: CLEARENCE(IN.)

R: JOURNAL RADIUS(IN.)

ANGI,ANG2: LOCATION OF THE MAGNET POLE 2(DEGREES)

EBC: CODE USED FOR EXPANDING PART AS A PERCENTAGE OF THE

GAP REGION

(A) 0: 10% OF THE GAP REGION

(B) i: 20% OF THE GAP REGION

CURRENT: CURRENT IN COILS(A)

NCOIL: # OF TURNS(EACH COIL)

LINE3- N: CIRCUMFERENTIAL ELEMENT DIVISIONS

M: RADIAL ELEMENT DIVISIONS

ALPHA: ANGLE BETWEEN POLES

NBON: SPECIFIED BOUNDARIES

PHISTARI: ARBITRARILY ASSUMED B.C ALONG POLE 1

PHIR: BOUNDARY CONDITION ALONG ROTOR CURVATURE

MG_DETH: MAGNET DEPTH

OUTPUT

PHI ......... MAGNETIC POTENTIAL FIELD

BETA ........ MAGNETIC FLUX DENSITY

GAMMA ....... MAGNETIC FLUX

SIGMA ....... MAGNETIC ENERGY

FORCE ....... MAGNETIC SUSPENSION FORCE

SUBROUTINES

COORD ....... GRID GENERATION

ELEMOD ...... ELEMENT NODAL SPECIFICATION

ASSEML ...... GLOBAL BANDED COEFFICENT MATRIX

MODMAT ...... MODIFIED BANDED MATRIX

GAUSS2 ...... GAUSS ELEMINATION METHOD FOR BANDED MATRIX

FLUXEG ...... MAGNETIC FLUX & ENERGY
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C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$
$

C

5

7

10

20

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

REAL*8 KAPPAI,KAPPA2,MMF,MG_DETH,MU

REAL*8 BETA(1000),AL(1000),PHI(800),PHIS(800),XJJ(50),YJJ(50,50)

REAL*8 X(800),Y(800),FJJ(50,50),RECMAT(800,100),REMMAT(800,100)

REAL*8 RX(300,10),RY(300,10),RPHI(300,10),XPLOT(500,4)

REAL*8 YPLOT(500,4),PHIPLOT(500,4),BETAPLOT(1000)

REAL*8 ANGPLOT(1000),XBETA(1000),YBETA(1000)

INTEGER EB,EBC,EM, ELEMT,BI,B2

INTEGER X_NUMBER,X_POINT,Y_POINT,Y_P

INTEGER II(1000 ,JJ(1000),KK(1000),IBOUND(2,800)

IN=I

IO=9

WRITE(IO,5)

FORMAT(IHI,10X, *** MAGNETIC FORCE CALCULATION--LINEAR MODEL

READ(IN,7)TITLE

FORMAT(30A4)

READ(IN,10)E,C,R,ANGI,ANG2,EBC,CURRENT,NCOIL

FORMAT(5FI0.4,I4,FI0.4,I6)

WRITE(*,20)E,C,R,ANGI,ANG2

FORMAT(IX, 'E=',F5.3,1X, 'C:',F5.3,1X, 'R:',F5.2,1X,

&'ANGI:',F5.2,1X, 'ANG2:',F5.2)

WRITE(*,25)EBC,CURRENT,NCOIL

25 FORMAT(IX,'EBC=',I4,1X,'CURRENT:',F8.4,1X,'NUMBER OF COIL=',I6)

READ(IN,30)N,M,ALPHA,NBON, PHISTARI,PHIR,MG_DETH

30 FORMAT(2II0,FI0.4,II0,3FI0.4)

WRITE(*,35)M,N,ALPHA,NBON

35 FORMAT(IX, 'M=',I4,1X, 'N=',I4,1X, 'ALPHA=',F7.2,1X, 'NBON=',I4)

WRITE(*,37)PHISTARI,PHIR,MG_DETH

37 FORMAT(IX, 'PHISTARI:',F7.2,1X, 'PHIR:',F7.2,

&IX, 'MAGNET DEPTH:',F7.4)

CONVER:0.0254D0

E:E*CONVER

C:C*CONVER

R:R*CONVER

MG_DETH=MG_DETH*CONVER

PI=4.0D0*ATAN(I.0D0)

MU=4.*PI*I.0E-7

D_A:(ANG2-ANGI)*PI/180.D0

POLE_L=D_A*(R+C)

WRITE(*,55)POLE_L

55 FORMAT(IX, 'POLE_L=',FI5.9)

IF(EB.EQ.0)GOTO 40

EB=5

NR=N/EB

GOTO 50

40 EB=I0

NR=N/EB

50 BI=NR*2+I

B2=N+BI

NI=B2+NR*2

MI=M+I

C TOTAL NODAL POINTS(INCLUDING EXPANDED BOUNDARY AREA)

NODE=NI*(MI)



JO

N2:NI-I

C TOTAL ELEMENTS

ELEMT:2*N2*M

WRITE(*,80)NODE,ELEMT

80 FORMAT(IX, 'NODE=, II0 IX, 'ELEMT:, Ii0)
C s t i

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C ARRAY OF POINTS FOR FORCE DISTRIBUTION

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$C

DELTA:C/10.D0

CHANGE:CONVER*I.0D_7

DO 3010 I=i,8

XJJ(I):.0D0

DO 3010 J:l,15

3010 YJJ(I,J):.0D0

DO 3020 I=l,l

C XJJ(I)=(I-I)*DELTA

XJJ(I)=.0135D0*CONVER

DO 3020 J:l,15

3020 YJJ(I'J):-021D0*CONVER-(J-I)*DELTA

C3020 WRITE(*,3022)XJJ(I),yjj(I,j )

3022 FORMAT(2X, 'XJJ:,,FI2 8 2X, 'yJJ=, FI2 8)
C • s r .

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C LOOP ON FORCE CALCULATION

c$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

DO 1050 I=l,l

DO 1050 J:l,l
C

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C CALCULATION OF BOUNDARY CONDITIONS FOR BACKWAORD PERTURBATION

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$C

XJ:XJJ(I)-CHANGE

YJ=YJJ(I,J)

AI:ANGI+ALPHA

A2=ANG2+ALPHA
C

C ..............

CALL COORD(BI,B2,NI,EB,N,M,C,R,AI,A2,PI XJ, YJ,X Y, RANGI,RANG2,
& RX,RY) ' '

C ..............

C

C ..........................................

CALL ELEMOD(M, N2,II,JJ,KK,ELEMT)
C ...............

C

C CHECK ORDER OF VERTICES WITHIN ELEMENTS

WRITE(IO,8000)

8000 FORMAT(2X, 'CHECK ORDER OF VERTICES WITHIN ELEMENTS')
DO 82 ITEST=I,ELEMT

WRITE(IO,84)II(ITEST),JJ(ITEST),KK(ITEST)

WRITE(IO,85)X(II(ITEST)),X(JJ(ITEST)),X(KK(ITEST))

82 WRITE(IO,85)Y(II(ITEST)),y(jj(ITEST)),Y(KK(ITEST) )
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84 FORMAT(IX, (316,1X))

85 FORMAT(IX, (6F8-5,1X))

C BANDWIDTH OF GLOBAL RECTANGULAR MATRIX

NWID=MI+2

WRITE(*,I35)NWID

135 FORMAT(IX, 'NWID=' ,I6)

C ................................................

C ...........

i t

-- iCALL ASSEML(M,N,NWID,ELEMT X,Y,EB,NODE,II,JJ,KK,RECMAT PHI,AL

& PHISTARI,PHIR,PHIS,IBKK,IBJJ'IBOUND)..............................

..............................

C ..........

C

C

Cll0

120

DO ii0 K=I,NODE
WRITE(. 120) (RECMAT(K,KJ),KJ:I,NWID)'PHI(K)

FORMAT (IX, 7F8 •2,2X, F8 •2)
.............................

C ..............................

C ...........

-- iCALL MODMAT(NWID,NBON,PHI NODE,RECMAT,REMMAT,PHIS,IBOUND'

IBKK,IBJJ,M,N,EB) ..............................
.............................

C ...........

C .................................

C ...............

C

C

140

C

C

C

C

C160

C150

170

WRITE (IO, 140)MI,NI

FORMAT (3X, I5, ', ', I5)

MNODE=NODE-M

DO 150 IP OT=I,MI

DO 160 jpOT=IPOT,MNODE,MI

X (JPOT) =X (JPOT) /CONVER

y (JPOT) =Y (JPOT) /CONVER

WRITE(IO,170)X(JPOT) ,Y(JPOT) ,PHI(JPOT)

MNODE=MNODE+ 1
') ,F7.3)

FORMAT (3X, 2 (F7.3, ' ,
...............................

C ............................

C ...........

t t t

- i s

CALL FLUXEG (EB, ELEMT, II ,JJ, KK, RANG1 RANG2 ,N AL, PHI ,X Y GAMMA

$SIGMA, BETA ,M ,R, C ,NODE ,MG--DETH 'ANGPLOT 'XBETA' YBETA) .............
...............................

C ..........

C

C

220

C

C ..........

CALL

&

GAMMASTARI:GA994A

WRITE(*,220)GAMMASTARI

FORMAT(IX, 'GAMMAST ARI=',FI2"4)

PHISTAR2=-PHIS TAR1

AI=ANGI

A2=ANG2

........................................

.....................

COORD(BI,B2,NI,EB,N,M,C,R,AI'A2'PI'XJ'YJ'X'Y'RANGI'RANG2'

RX,RY)
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C ......................................................................

C

C .........................................

CALL ELEMOD(M,N2,II,JJ,KK,ELEMT)

C ......................................................................

C

C .....................................................................

CALL ASSEML(M,N,NWID, ELEMT,X,Y,EB,NODE, II,JJ,KK,RECMAT,PHI,AL,

& PHISTAR2,PHIR, PHIS,IBKK, IBJJ,IBOUND)

C ......................................................................

C

C .................................................................

CALL MODMAT(NWID,NBON, PHI,NODE,RECMAT,REMMAT, PHIS,IBOUND,

& IBKK, IBJJ,M,N,EB)

C ..................................................................

C

C .........................................

CALL GAUSS2(REMMAT, PHI,NODE,NWID)

C .........................................

C

C ....................................................................

CALL FLUXEG(EB,ELEMT,II,JJ,KK,RANGI,RANG2,N,AL,PHI,X,Y,GAMMA,

$SIGMA,BETA,M,R,C,NODE,MG_DETH,ANGPLOT,XBETA,YBETA)

C ......................................................................

C

C DO 230 I:EM, I,-M2

C230 WRITE(*,240) (BETA(J),J=I,I+M2-1)

C

C .....................................................

C CALCULATE PARAMETERS TO DECIDE BOUNDARY CONDITION

C .....................................................

C

GAMMASTAR2=GAMMA

C WRITE(*,250)GAMMASTAR2

250 FORMAT(IX, 'GAMMASTAR2=',FI2.4)

KAPPAI=GAMMASTARI/PHISTARI

KAPPA2=GAMMASTAR2/PHISTAR2

MMF=CURRENT*FLOAT(NCOIL)

PHIPI=MMF/(I.-KAPPAI/KAPPA2)

PHIP2=PHIPI-MMF

C

c$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$
C CALCULATION OF MAGNETIC FLUX AND ENERGY FOR BACKWARD PERTURBATION

CSSSSSSSSSSSSSSSSSS$$$$S$$$$$$$$$$$$S$$$$$$$$$$$S$$$$$$$$$$$$$S$$$$$$$$
$
C

XJ=XJJ (I ) -CHANGE

YJ=YJJ (I, J)

AI=ANGI+ALPHA

A2=ANG2+ALPHA

C

C ......................................................................
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NK:I

DO 650 IPLOT:I,N2

DO 660 JPLOT=I,M

XPLOT(NK, I)=RX(IPLOT+I,JPLOT)

XPLOT(NK,2)=RX(IPLOT,JPLOT)

XPLOT(NK,3)=RX(IPLOT,JPLOT+I)

XPLOT(NK,4)=RX(IPLOT+I,JPLOT+I)

YPLOT(NK,I)=RY(IPLOT+I,JPLOT)

YPLOT(NK,2)=RY(IPLOT,JPLOT)

YPLOT(NK,3)=RY(IPLOT,JPLOT+I)

YPLOT(NK,4)=RY(IPLOT+I,JPLOT+I)

PHIPLOT(NK, I)=RPHI(IPLOT+I,JPLOT)

PHIPLOT(NK,2)=RPHI(IPLOT,JPLOT)

PHIPLOT(NK,3)=RPHI(IPLOT,JPLOT+I)

PHIPLOT(NK,4)=RPHI(IPLOT+I,JPLOT+I)

660 NK=NK+I

650 CONTINUE

NUMELE=ELEMT/2

C WRITE(IO,670)NUMELE

670 FORMAT(3X, I5)

C DO 680 IPLOT=I,NUMELE

C DO 685 JCON=I,4

C X PLOT(IPLOT'JCON)=XPLOT(IPLOT'JCON)/CONVER

C685 YPLOT( IPLOT'JCON)=YPLOT(IPLOT'JCON)/CONVER

C

c$$SSSSSSSSSSSSSSSSSSSSSSS$$$$SSSSS$$
C DATA OUTPUT FOR CONTOUR GRAPHICS

cS$$$$$$$$$$$$$SSSSSSSSSSSSSSSSSS$$$$
C

C WRITE(IO,8010)

C8010 FORMAT(2X, 'CONTOUR PLOT')

C WRITE(IO,690) (XPLOT(IPLOT,JPLOT),JPLOT=I,4)'

C & (YPLOT(IPLOT,JPLOT),JPLOT:I,4)

C680 WRITE(IO,700) (PHIPLOT(IPLOT,JPLOT),JPLOT:I'4)

690 FORMAT(3X, 7 (F7.3, ', ') ,F7.3)

700 FORMAT(3X, 3 (FI0.4, ',' ) ,FI0.4)

A1 =ANGI

A2 =ANG2

C ..................

- CALL COORD(BI,B2,NI,EB,N,M,C,R,AI,A2,PI,XJ'YJ'X'Y'RANGI'RANG2'

C

C ...............................

CALL ELEMOD(M,N2,II,JJ,KK,ELEMT)

C .........................................

C
....................................................

C ..................

CALL ASSEML(M,N,NWID,ELEMT,X,Y,EB,NODE,II'JJ'KK'RECMAT'PHI'AL'

& PHIP2,PHIR,PHIS,IBKK,IBJJ,IBOUND)

.........................................

C ................

C ..............................

C .....................................
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GAMMA_2A:GAMMA

SIGMA_2A:SIGMA

WRITE(*,310)GAMMA_2A, SIGMA_2A

310 FORMAT(IX, 'GAMMA 2A=',FI2.4,1X, 'SIGMA 2A:',FI2.4)

C

c$$$S$$$S$$$S$$SSSSSS$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C CALCULATION OF BOUNDARY CONDITIONS FOR FORWARD PERTURBATION

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

XJ:XJJ (I ) +CHANGE

YJ=YJJ (I, J)

AI=ANGI+ALPHA

A2:ANG2+ALPHA

C

C ......................................................................

CALL COORD(BI,B2,NI,EB,N,M,C,R,AI,A2,PI,XJ,YJ,X,Y,RANGI,RANG2,

& RX,RY)

C ......................................................................

C

C ........................................

CALL ELEMOD(M,N2,II,JJ,KK,ELEMT)

C ........................................

C

C ......................................................................

CALL ASSEML(M,N,NWID,ELEMT,X,Y,EB,NODE, II,JJ,KK,RECMAT,PHI,AL,

& PHISTARI,PHIR, PHIS,IBKK, IBJJ,IBOUND)

C ......................................................................

C

C .................................................................

CALL MODMAT(NWID,NBON, PHI,NODE,RECMAT,REMMAT,PHIS,IBOUND,

& IBKK,IBJJ,M,N, EB)

C .................................................................

C

C ..........................................

CALL GAUSS2(REMMAT,PHI,NODE,NWID)

C ..........................................

C

C ......................................................................
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CALL FLUXEG(EB,ELEMT,II,JJ,KK,RANGI,RANG2,N,AL, PHI,X,Y,GAMMA,

$SIGMA,BETA,M,R,C,NODE,MG_DETH,ANGPLOT,XBETA,YBETA)

C ......................................................................

C

C

410

M2=M*2

EM=ELEMT-M2+I

GAMMASTARI:GAMMA

WRITE(*,410)GAMMASTARI

FORMAT(IX,'GAMMASTARI=',FI2.4)

PHISTAR2=-PHISTARI

AI=ANGI

A2=ANG2

C

C ......................................................................

CALL COORD(BI,B2,NI,EB,N,M,C,R,AI,A2,PI,XJ,YJ,X,Y,RANGI,RANG2,

& RX,RY)

C ......................................................................

C

C .........................................

CALL ELEMOD(M,N2,II,JJ,KK,ELEMT)

C .........................................

C

C ......................................................................

CALL ASSEML(M,N,NWID, ELEMT,X,Y,EB,NODE, II,JJ,KK,RECMAT,PHI,AL,

& PHISTAR2,PHIR, PHIS,IBKK, IBJJ, IBOUND)

C ...............................................................

C

C ..................................................................

CALL MODMAT(NWID,NBON, PHI,NODE,RECMAT,REMMAT, PHIS,IBOUND,

& IBKK, IBJJ,M,N,EB)

C ......................................................................

C

C ...........................................

CALL GAUSS2(REMMAT,PHI,NODE,NWID)

C ...........................................

C

C ......................................................................

CALL FLUXEG(EB,ELEMT, II,JJ,KK,RANGI,RANG2,N,AL,PHI,X,Y,GAMMA,

$SIGMA, BETA,M,R,C,NODE,MG_DETH,ANGPLOT,XBETA,YBETA)

C ......................................................................

C

C

420

C

GAMMASTAR2:GAMMA

WRITE(*,420)GAMMASTAR2

FORMAT(IX,'GAMMASTAR2=',FI2.4)

KAPPAI=GAMMASTARI/PHISTARI

KAPPA2=GAMMASTAR2/PHISTAR2

MMF=CURRENT*FLOAT(NCOIL)

PHIPI=MMF/(I.-KAPPAI/KAPPA2)

PHIP2=PHIPI-MMF

WRITE(*,430)KAPPAI,KAPPA2,FPI,FP2



"- AIO

430 FORMAT(IX, 'KAPPAI=',FI2.4,1X, 'KAPPA2:',FI2.4,1X,

&'FPI=',FI2.4,1X,'FP2=',FI2.4)

C

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C CALCULATION OF MAGNETIC FLUX AND ENERGY FOR FORWARD PERTURBATION

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

XJ:XJJ (I )+CHANGE

YJ:YJJ (I, J)

AI=ANGI+ALPHA

A2:ANG2+ALPHA

C

C ......................................................................

CALL COORD(BI,B2,NI,EB,N,M,C,R,AI,A2,PI,XJ,YJ,X,Y,RANGI,RANG2,

& RX,RY)

C ......................................................................

C

C ..........................................

CALL ELEMOD(M,N2,II,JJ,KK,ELEMT)

C ..........................................

C

C ......................................................................

CALL ASSEML(M,N,NWID,ELEMT,X,Y,EB,NODE,II,JJ,KK,RECMAT,PHI,AL,

& PHIPI,PHIR, PHIS,IBKK, IBJJ, IBOUND)

C ......................................................................

C

C ..................................................................

CALL MODMAT(NWID,NBON, PHI,NODE,RECMAT,REMMAT, PHIS,IBOUND,

& IBKK, IBJJ, M, N, EB)

C ..................................................................

C

C .........................................

CALL GAUSS2(REMMAT, PHI,NODE,NWID)

C ..................................

C

C ......................................................................

CALL FLUXEG(EB,ELEMT, II,JJ,KK,RANGI,RANG2,N,AL,PHI,X,Y,GAMMA,

$SIGMA, BETA,M,R,C,NODE,MG_DETH,ANGPLOT,XBETA, YBETA)

C ......................................................................

GAMMA_IB:GAMMA

SIGMA_IB=SIGMA

WRITE(*,330)GAMMA_IB,SIGMA_IB

330 FORMAT(IX, 'GAMMA IB:',FI2.4,1X, 'SIGMA_IB:',FI2.3)

AI:ANGI

A2=ANG2

C

C ......................................................................

CALL COORD(BI,B2,NI,EB,N,M,C,R,AI,A2,PI,XJ,YJ,X,Y,RANGI,RANG2,

& RX,RY)
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C ......................................................................

C

CALL ELEMOD(M,N2,II,JJ,KK,ELEMT)

C .........................................

C
...............................

C ........................................

CALL ASSEML(M,N,NNID,ELEMT,X,Y,EB,NODE, II,JJ,KK,RECMAT, PHI,AL,

& PHIP2,PHIR,PHIS,IBKK, IBJJ,IBOUND)

C ......................................................................

C

C ..................................................................

CALL MODMAT(NWID,NBON,PHI,NODE,RECMAT,REMMAT, PHIS,IBOUND,

& IBKK, IBJJ,M,N,EB)

C .................................................................

C

C ............................................

CALL GAUSS2(REMMAT,PHI,NODE,NWID)

C- - ...............................

C

C ...................................................................

CALL FLUXEG(EB,ELEMT, II,JJ,KK,RANGI,RANG2,N,AL, PHI,X,Y,GAMM ,

$SIGNA,BETA,M,R,C,NODE,MG_DETH,ANGPLOT,XBETA,YBETA)

C .................................................

C

340

C

C

C

GAMMA_2B=GAMMA

SIGMA_2B=SIGMA

WRITE(*,340)GAMMA_2B,SIGMA_2B

FORMAT(IX, 'GAMMA_2B=',FI2.4,1X,'SIGMA_2B=',FI2-3)

FORCE CALCULATION

DELTA_SIGMA=(SIGMA_IB+SIGMA_2B)-(SIGMA_IA+SIGMA--2A)

FORCE=DELTA_SIGMA/CHANGE

FORCE=MU*FORCE/4.

FJJ(I,J)=FORCE

WRITE(*,I070)XJJ(I),YJJ(I,J),FJJ(I,J)

1050 CONTINUE

DO 1060 I=l,l

XJJ(I)=XJJ(I)/C

DO 1060 J=l,15

yJJ(I,J)=YJJ(I,J)/C

WRITE(IO,8050)

8050 FORMAT(IX,4X,'X',I2X,'Y',I7X,'FORCE')

1060 WRITE(IO,1070)XJJ(I),YJJ(I,J),FJJ(I,J)

1070 FORMAT(IX,FI2.8,1X,FI2.8,1X,FI2.3)

STOP

END

C

SUBROUTINE COORD(BI,B2,NI,EB,N,M,C,R,ANGI,ANG2,PI,XJ,YJ,X,Y,

&RANGI,RANG2,RX,RY)
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3o

40

5O

35

8O
20

130

120

C

C

C

2O

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

REAL*8 X(800),Y(800),RY(300,10),H(300),RX(300,10)

INTEGER EB,BI,B2

IO:9

RANGI:ANGI*PI/180.

RANG2=ANG2*PI/180.

RANG:(ANG2-ANGI)/FLOAT(EB)*PI/180.

THETAI:RANGI-RANG

THETA2:RANG2+RANG

THETA=THETAI

DO 20 I=I,NI

IF(I.NE.I)GO TO 30

H(I)=C-XJ*COS(THETA)-YJ*SIN(THETA)

GO TO 35

IF(I.LE.BI)GO TO 40

IF(I.GT.B2)GO TO 40

DELTA TH=(RANG2-RANGI)/FLOAT(N)

GO TO 50

DELTA_TH:(RANG2-RANGI)/FLOAT(N)*0.5

THETA:THETA+DELTA_TH

H(I)=C-XJ*COS(THETA)-YJ*SIN(THETA)

CC=COS(THETA)

DELTA_H:H(I)/FLOAT(M)

DO 80 J:I,M+I

RX(I,J):(R+C-H(I)+DELTA_H*(J-I))*COS(THETA)

RY(I,J):(R+C-H(I)+DELTA_H*(J-I))*SIN(THETA)

CONTINUE

CONTINUE

K=I

DO 120 I:I,NI

DO 130 J:I,M+I

X(J+(K-I)*(M+I)):RX(I,J)

Y(J+(K-I)*(M+I)):RY(I,J)

K:K+I

RETURN

END

SUBROUTINE ELEMOD(M,N2,II,JJ,KK,ELEMT)

INTEGER II(1000) ,JJ(1000) ,KK(1000) ,ELEMT,ENDE

INTEGER STARTE, T, END

IO:9

MI:M+I

STARTE=I

ENDE:STARTE+ (M-I) *2

K=I

END:ELEMT- 1

CONTINUE

T=0

DO 30 I=STARTE, ENDE,2

II (I) =K+T
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JJ(I):II(I)+MI+I

KK(I)=JJ(I) -i

II(I+l)=II(I)

JJ(I+l)=II(I+l)+l

KK(I+I):JJ(I)

30 T:T+I

IF(ENDE.EQ.END)GO TO

STARTE=ENDE+2

ENDE:ENDE+M*2

K:K+M+I

GO TO 20

40 CONTINUE

RETURN

END

C

&

C

i0

20

30

40

C

41

Y(I)

4O

SUBROUTINE ASSEML(M,N,NWID,ELEMT,X,Y,EB,NODE, II,JJ,KK,RECMAT,PHI,

AL,PHISTARI,PHIR, PHIS,IBKK, IBJJ,IBOUND)

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

REAL*8 X(800),Y(800),B(3),C(3),AL(1000),PHI(800)

REAL*8 RECMAT(800,100),BDBMAT(1000,3,3)

REAL*8 PHISTARI,PHIR, PHIS(800)

INTEGER IBOUND(2,800),ELEMT,EB

INTEGER II(1000),JJ(1000),KK(1000),INELE(3,1000)

IO:9

DO i0 I:I,NODE

DO i0 J:I,NWID

RECMAT(I,J)=0.0

DO 20 I:I,NODE

PHI(I):0.0

MI=M+I

M2=(N/EB*2+I)*MI

M3=NODE-N/EB*2*MI

IBKK:I

DO 30 I:M2,M3,MI

PHIS(I):PHISTARI

IBOUND(I,IBKK):I

IBKK:IBKK+I

IBKK:IBKK-I

IBJJ:I

DO 40 I:I,NODE,MI

PHIS(I):PHIR

IBOUND(2,IBJJ):I

IBJJ=IBJJ+I

IBJJ=IBJJ-I

DO 50 NN:I,ELEMT

I:II (NN)

J=JJ(NN)

K=KK(NN)

WRITE(IO,41)X(I),X(J) ,X(K),Y(I),Y(J),Y(K)

FORMAT(IX, (6F8.6,1X))

AL(NN)=0.5*(X(I)*Y(J)+X(J)*Y(K)+X(K)*Y(I)-X(I)*Y(K)-X(K)*Y(J)-

&*X(J))



- - A14

C

42

WRITE (IO, 42 )AL (NN)

FORMAT (IX, FI2.8 )

B(1):Y(J)-Y(K)

B(2) =Y(K)-Y(I)

B(3):Y(I) -Y(J)

C(1) =X(K) -X(J)

C (2) =X(I) -X(K)

C (3) =X(J) -X(I)

INELE (I,NN) :II (NN)

INELE (2, NN) :JJ (NN)

INELE (3, NN) :KK (NN)

DO 60 NR=I,3

DO 60 NC:I,3

60 BDBMAT(NN,NR,NC):(B(NR)*B(NC)+C(NR)*C(NC))/(4.0*AL(NN))

50 CONTINUE

DO 70 NN=I,ELEMT

DO 80 IN=I,3

DO 80 JN=I,3

ID=INELE(IN,NN)

JD:INELE(JN,NN)

IF(JD.LT.ID)GO TO 85

RECMAT(ID,JD+I-ID)=RECMAT(ID,JD+I-ID)+BDBMAT(NN, IN,JN)

GOTO 80

85 DO i00 NEWB=I,IBKK

IF(JD.NE.IBOUND(I,NEWB))GOTO I00

PHI (ID) :PHI (ID) -BDBMAT (NN, IN, JN) *PHIS (JD)

i00 CONTINUE

80 CONTINUE

70 CONTINUE

RETURN

END

C

W

SUBROUTINE MODMAT(NWID,NBON,PHI,NODE,RECMAT,REMMAT, PHIS,

& IBOUND, IBKK, IBJJ,M,N,EB)

4O

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

REAL*8 PHI(800),RECMAT(800,100),PHIS(800),REMMAT(800,100)

INTEGER MM(10),NEND(10),IBOUND(2,800),IIBOUND(2,800)

INTEGER BONI,BON2,EB

IO=9

MI:M+I

M2:(N/EB*2+I)*MI

M3:NUMN-N/EB*2*MI

DO 40 I=I,NODE

DO 40 J:I,NWID

REMMAT(I,J):RECMAT(I,J)

NEND(1)=IBOUND(I,IBKK)

NEND(2)=IBOUND(2,IBJJ)

MM(1)=M2

MM(2):I

DO i00 NN=I,NBON

BONI:MM(NN)

DO ii0 I=I,NODE

IF(I.GT.NEND(NN))GO TO ii0
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140

130

170

ii0

I00

C

C****

C****

C

I000

C

C

C

2500

IF(I.EQ.BONI)GO TO 130

SUM=0.0

BON2:BONI

JJ:NWID+I-I

DO 140 J=I,JJ

IF(BON2.GT.NEND(NN))GO TO 140

IF(J.NE.BON2)GO TO 140

SUM=SUM+REMMAT(I,J+I-I)*PHIS(J)

BON2=BON2+MI

REMMAT(I,J+I-I):0.0

CONTINUE

PHI(I)=PHI(I)-SUM

GO TO II0

CONTINUE

DO 170 J=I,NWID

IF(J.EQ.I)GO TO 170

REMMAT(I,J)=0.0

CONTINUE

PHI(I):REMMAT(I,I)*PHIS(I)

BONI=BONI+MI

CONTINUE

CONTINUE

RETURN

END

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

REAL*8 E(800,100),V(800),U(800)

TRIANGULARIZE

NWIDM=NWID-I

ISTOP:NNODES-I

ISTOP:NNODES-I

DO i000 ID=I,ISTOP

DO i000 JD:I,NWIDM

QUO=E(ID,JD+I)/E(ID, I)

V(ID+JD)=V(ID+JD)-QUO*V(ID)

KSTOP=NWID-JD

DO i000 KD=I,KSTOP

E(ID+JD,KD)=E(ID+JD,KD)-QUO*E(ID,KD+JD)

CONTINUE

BACK SUBSTITUTE

U (NNODES ) :V (NNODES ) / E (NNODES, 1 )

DO 3000 ID:2,NNODES

SUM--0.

IN:NNODES+ i- ID

DO 2500 JD:2,NWID

SUM=SUM+E (IN, JD) *U (IN+JD-I)

C ONT I NU E

U(IN)=(V(IN)-SUM)/E(IN, I)
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3000 CONTINUE

DO 4000 ID=I,NNODES

V(ID):U(ID)

4000 CONTINUE

RETURN

END

C

SUBROUTINE FLUXEG(EB,ELEMT,II,JJ,KK,RANGI,RANG2,N,AL, PHII,X,Y,

$G_INA, SIGMA,BETA,M,RR,CL,NODE,MG_DETH,_NGPLOT,XBETA,YBETA)

20

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

REAL*8 AL(1000),PHII(800),X(800),Y(800),MG_DETH,ANGPLOT(1000)

REAL*8 BETA(1000),BETAX(1000),BETAY(1000),B(800),C(800)

REAL*8 XBETA(1000),YBETA(1000)

REAL*8 RANGI,RANG2,GAMMA,SIGMA, RR,CL,DELTA_TH,DELTA_L

INTEGER ELEMT,EB,II(1000),JJ(1000)

INTEGER KK(1000)

IO:9

DO 20 I=I,ELEMT

BETAX(1):0.0

BETAY(I)=0.0

25

C

C

C

CALCULATE ELEMENT CENTER

DO 25 ICENT:I,ELEMT,2

IE:II(ICENT)

JE:JJ(ICENT)

KE:KK(ICENT)

XMID=(X(IE)+X KE))/2.

YMID=(Y(IE)+Y KE))/2.

XBETA ICENT)= XMID+0.5*X(JE))/I.5

YBETA ICENT)= YMID+0.5*Y(JE))/I.5

IE:II ICENT+I

JE:JJ ICENT+I

KE:KK ICENT+I

XMID: X(IE)+X(KE))/2.

YMID: Y(IE)+Y(KE))/2.

XBETAIICENT+I):(XMID+0.5*X(JE))/I.5

YBETA_ICENT+I)=(YMID+0.5*Y(JE))/I-5

CONTINUE

CALCULATE FLUX DENSITY

DO 30 NN:I,ELEMT

I:II (NN)

J:Ja (NN)

K=KK (NN)

B(I) :Y(J) -Y(K)

B(J) :Y(K) -Y(I)

B(K) =Y(I) -Y(J)

C(I) =X(K) -x(a)

C(J) :X(I)-X(K)

C(K)=X(J)-X(I)

BETAX(NN):-(B(I)*PHII(I)+B(J)*PHII(J)+B(K)*PHII(K) ) / (2.*AL(NN))
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C

I00

3O

C

ii0

BETAY(NN)=-(C(I)*PHII(I)+C(J)*PHII(J)+C(K)*PHII(K))/(2-*AL(NN))

WRITE (*, i00) BETAX (NN), BETAY (NN)

FORMAT (2X, 'BX: ', FI5.4, IX, 'BY: ' ,FI5.4)

ANGPLOT (NN) =ATAN (BETAY (NN) /BETAX (NN))

BETA(NN) :SQRT (BETAX(NN) **2+BETAY (NN) *'2 )

WRITE(*,110)

FORMAT(2X)

DELTA_TH:(RANG2-RANGI)/FLOAT(N)*0.5

DELTA_L:2.*(RR+CL)*SIN(DELTA_TH)

C DELTA_L=0.1

C WRITE(*,38)DELTA_TH,DELTA_L

38 FORMAT(IX,,DELTA_TH=',FI2.9,1X,'DELTA_L=',FI2-9)

GAMMA:0.0

M2=M*2

NSTART=M2*(N/EB*2+I)

NEND=ELEMT-N/EB*2*M2

DO 40 I=NSTART,NEND,M2

40 GAMMA=GAMMA+BETA(I)

GAIVSMA=DELTA_L*GAMMA*MG_DETH

C GAMMA=GAMMA*MG_DETH

SIGMA=0.0

DO 50 I=I,ELEMT

50 SIGMA=SIGMA+(BETAX(I)**2+BETAY(I)**2)*AL(I)*MG--DETH

RETURN

END

C

SUBROUTINE GAUSSI(E,V,NNODES,NWID)

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

REAL*8 E(200,200),V(800),U(800)

C

C

C

C

C

C

TRIANGULARIZE

I000

NWIDM:NWID-I

DO i000 ID:I,NNODES

DO I000 JD:I,NWIDM

QUO=E(ID+JD, ID)/E(ID, ID)

IDP=ID+NWIDM

V(ID+JD)=V(ID+JD)-QUO*V(ID)

DO i000 KD=ID,IDP

E(ID+JD,KD)=E(ID+JD,KD)-QUO*E(ID,KD)

CONTINUE

BACK SUBSTITUTE

1500

2000

U(NNODES)=V(NNODES)/E(NNODES,NNODES)

DO 2000 ID:2,NWID

SUM=0.

IN=NNODES+I-ID

NSTOP=NNODES

INP=IN+I

DO 1500 JD=INP,NSTOP

SUM=SUM+E(IN,JD)*U(JD)

CONTINUE

U(IN)=(V(IN)-SUM)/E(IN, IN)

CONTINUE
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2500

3000

4000

NWIDP=NWID+I

DO 3000 ID:NWIDP,NNODES

SUM=0.

IN:NNODES+I-ID

NSTOP:IN+NWID-I

INP:IN+I

DO 2500 JD=INP,NSTOP

SUM=SUM+E(IN,JD)*U(JD)

CONTINUE

U(IN)=(V(IN)-SUM)/E(IN, IN)

CONTINUE

DO 4000 ID:I,NNODES

V(ID) =U (ID)

CONTINUE

RETURN

END
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APPENDIX B - COMPUTATIONAL METHODS INCLUDING METAL
REGIONS

B.1 Modelling of Magnetization Curve

If hysteresis and anisotropic effects are neglected, the magnetization function, or B

vs. H function, for a ferromagnetic material can be represented as a continuous, single-

valued nonlinear function. It is difficult, however, to find a single analytical expression

that accurately represents the function over the entire useful range. A procedure using

cubic spline fits recommended by Silvester et al.[B 1] is used in the present work to model

the magnetization characteristic of silicon sheet steel. The graphical data for the

characteristic were taken from Smith [B2].

The procedure for modelling the experimentally determined relationship between B
and H is as follows:

First, convert the data from a permeability representation (B vs. H) to a reluctivity v

vs. B 2, the square of the flux density. The two methods of representing the data are shown

in Figure B 1 and Figure B2.

Silicon sheet steel

1.4

1.2

1.0

B(T) 0.8

0.6,

0.4

0.2

0.0

0
I ' | I ' I I "

500 1000 1500 2000 2500 3000

N(A.t/m)

Figure B 1. Magnetization of silicon sheet steel
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B2

Figure B2. Reluctivity vs. square of flux density

Next, evenly divide B 2 into n subintervals. Then within an interval between end

points i 1 and i2 the value of v and the slope _ of the v-B 2 curve can be calculated by the

cubic interpolation formulae

x- B2-Bi21 (1.1)
2 2

Bi2-Bi!

V(x) = (2x3-3x2+ 1) Vil+(-2x3+3x2) Vi2+(x3-2x2+x) Kil+(X3-X2) lq2 (1.2)

K(x)= dr_ 1 {(6xZ_6x) Vil+(_6x2+6x) Vi2+(3xe_4x+ 1) Ki l+(3x2_2x) Ki2 } ( 1.3)
dB 2 2 2Bi2-Bil

dl( _ (12x-6) Vii+ (- 12x+6) Vi2+(6x-4) Ki 1+(6X-2 ) Ki2
dB 2

(1.4)

The values of vi are known from the B-H curve and K i of (2) and (3) can be

obtained by setting a constraint that the slope of _: with respect to B2 must to be continuous

at the interval ends. For instance, if v-B 2 is divided into 6 sub-segments as shown in Fig.

2, for two adjacent intervals from node i-1 to node i and from node i to node i+l, the

gradient at the right end (x= 1) is evaluated using (1.4)
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[dd--_]= 6Vi.l-6Vi+2_Ci.l+4_:i
i

(1.5)

Similarly, calculating the quantity at node i at x=0 in the second interval

/dd---_-] = -6vi+6vi+l-4_q-2_:i+1
i

(1.6)

Equating (5) and (6)

Ki-l+4Ki+Ki+l = 3Vi+l-3Vi-I (1.7)

For a v-B 2 curve with 6 subintervals, expanding (7) leads to

l_I+4K2+K 3 = 3V3-3VI

K2+4K3+l'_4 = 3Vn-3V2

K3+4_:4+_C5 = 3V5-3V3

lc-4+4KS+K6 = 3V6-3V4

K5+4K6+K7 = 3V7-3V5

a set of 5 simultaneous linear equations with 7 unknowns. However, for the leftmost node

at B=0, v can be easily obtained as a constant from B-H curve, leading to K:I=0. For _c7,

different values must be tried until the series of _i from (7) are positive and monotonic.

With the above special treatment of leftmost and rightmost nodes, the unknowns are

reduced to five

41_2+1,c3= 3v3-3Vl

_:2+4K3+K4 = 3V4-3V2

_3+4_4+K5 = 3Vs-3V3

K4+4_5+1% = 3V6-3V4

1,C5+41% = 3V6-3V4-K: 7

Finally, use the calculated _ciin (1.2) and (1.3) to check the predicted the curve of

H vs. B as illustrated in Figure B3.
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Silicon sheet steel

1.4_

1.2

1.0

B 0.8

0.6

0.4

0.2

0.0 I I I I I

0 500 1000 1500 2000 2500 3000

H

Figure B3. Comparison of material sample test and curve modelling,

circle ..... material sample test
square .... curve modelling.
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B.2 Iteration for Flux Distribution: Newton-Raphson Method

To calculate the forces from a magnet accurately it is necessary to obtain solutions

to the Poisson equation consistent with the magnetization characteristic of the metal. A

Newton-Raphson iteration algorithm has been developed by Silvester et al.[B I ] and is

suggested by many researchers working in this field due to its rapid convergence and

unconditional stability. After evaluation of several iteration methods, the Newton-Raphson

algorithm was found to converge faster and more stably than other methods, but it can not

well constrain the saturated magnetic flux density because of the sharp increase of the

reluctivity beyond the saturation point. However, with an undercorrecting parameter for

the residual part of the iteration as well as an additional successive overrelaxation (SOR)

form for a weighted combination of the reluctivity obtained at step n and step n+ 1, the

Newton-Raphson algorithm offers a satisfactory solution.

A summary of the iteration algorithm based on [B 1] is presented below.

As presented in the previous report, the magnetic potential field will be obtained by

minimizing the energy functional

_(A)= l (W-JA) df_ (2.1)

here W is the density of magnetically stored energy

W=f BH dB (2.2)

The requirement to minimize functional (2.1) is equivalent to demanding

at
aA---_-= 0. (2.3)

Expanding (2.3) will yield N simultaneous nonlinear equations whose solution A

describes the desired result.

To construct an iteration process, expand (2.3) in a Taylor series
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( a2_ ]AA.
(0_i)A+AA = (_i)A+ j_ _,aAiaaj ]A J ....

Neglecting those terms beyond the second derivative term will yield a matrix

equation

_t_/-1 _
AAj= ,c]Ai_)Aj ]A+AA (_-7)A+AA

(2.4)

(2.5)

Then a successive correction will be formed based on (2.5):

= a_
DAgAj]A,_ (2.6)

To apply the iteration process (2.6) for finite element formulation, we calculate the

first and second derivatives of (2.1)

J) O

a2{ f a2waA-7-Aj- aA_j dn

(2.7)

(2.8)

The field vector H is related to the flux density B by nonlinear reluctivity,

H = v(B 2) B (2.9)

Therefore (2.2) will become
,B 2

w--_l
I

v(B2) d(B 2) (2.10)

Within an element, the potential is given by an interpolation form suitable for finite

element calculations

A= E AiNi (2.11 )
i
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Thenthesquaredflux densityin theelementwill begivenby

B2=Z Z AiAjVNi.VNj
i j

Differentiatingbythechainrule,

(2.12)

0W _ v(B 2) Z AkgNi-gNk

aAi k
(2.13)

°_2W - 2 d AmAn(VN VNi)(VNn" Nj) (2.14)
(-)aic]Aj vVNi'VNj + dB2_ m n_ m" g

Hence the residual vectors of the iterative process (2.6) will be formed by joining

the individual element contributions formed according to (2.7) and (2.13)

£ (_i - J) d_= k_ Akl vVNk.VNid_-I J d_ (2.15,

fR_ _ [ AmAn£ d_VNm'VNi)(VNn'VNj) d£'2oqAio3Aj xa=JvVN'VN'+2Era dU2

For a first-order triangular element, define

I__=(vVNi'VNj+2£VNm'VNjd_=Smj'1 JR
(2.17)

and then the matrix contribution will be

l _A_k _2 = V Z SkiAi
i

(2.18)
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f 02W 2 dv _"0AiO_ d_2= vSij+/_rd-_"_ n_ AmAnSimZjn (2.19)

where

The second term of (2.19) can be simplified to

2 d v_ -_
ArdB2 m'_ n_ AmAnSimSjn'-" UiU j

U i = '_ SijAj

J

So that the Jacobian matrix contributions are given, finally, by

2 dv UiUj
Pij = V Sij + Ar dB 2

(2.20)

(2.21)

(2.22)

Within every iteration, the reluctivity v is weighted by SOR:

V (n*l)=V(n)-I-(0(V*-V(n))

where v* is calculated from the approximate magnetization characteristic.

The iteration process is illustrated by the program flow chart of Figure B4.

(2.23)
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Compute elementcoeff. Irna_-icesand sourcevectDrs

J

f

f
i+l fittingIPredictvi+iand _,, using curve

I

No

Calculateresidual
V=SA-J

Jacobianmatrix
P

I Modify P with B.C. ]

I

I

l
Testconvergence 1

Figure B4. Program flow chart
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B.3 Efficient Calculation of Force

In static electromagnetic field analysis, the virtual work principle is commonly used

to calculate magnetic force acting on a rigid, current-free and movable body:

aW
Fs = - -- (3.1)

as

where _)s is an infinitesimal distance along the s-direction and W is the magnetic energy

stored within the computation region. Therefore, to obtain magnetic force, the suspended

body is subjected to a virtual displacement, then the field quantities are computed at both

positions. A general procedure is first to solve the governing equation of a field problem

with specified boundary conditions. For example, a static 2-D magnetic field will be

expressed as a partial differential equation of Poisson's type:

VVVAz(x,y) = Jz. (3.2)

Then the magnetic flux density will be obtained by calculating the curl of the vector

magnetic potential

m m

B=VxA. (3.3)

Magnetic energy finally is calculated by an integration over the volume containing

the total distributed magnetic energy in terms of field quantities

(3.4)

In a numerical analysis for an electromagnetic field problem, the computation

region may be bounded by irregular contours and may also involve several different

materials. So a discretization of the domain may require many elements and the resulting

force calculation would be very time-consuming. The problem becomes even more severe

when an iterative method must be used to deal with nonlinearities such as the magnetization

characteristics of different magnetic materials. To develop a more efficient and forthright

algorithm for magnetic force calculation, Coulomb derived an elegant formula for

implementing the virtual work principle without the need for a second field solution
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[B3,B4]. A mapping approach is used so that the calculations of differential terms of the

field quantities have been switched to the calculations of differential changes of the

coordinates in the Jacobian matrix. This approach not only saves the time that would be

required for the second field solution, but may also improve the accuracy of the solution.

It reduces the computer round-off error since the domain of the force calculation includes

only the distorted elements during a virtual displacement. In the present research the

principle of Coulomb's work is applied to derive the force calculation equations for two

theoretical models: a linear solution for magnetic potential based on Laplace's equation,

which was described in detail in a previous report, and a nonlinear Poisson's equation

model.

B.3.1. Force Calculation using Linear Potential Model

With an assumption of infinite permeability of magnetic material, the computation region

will only involve the air gap between the magnet poles and the suspended rotor. The

fundamental equation of the source-free field then represents the curl-free nature of the

magnetic field intensity

I

VxH=0.. (3.5)

With the vector identity

VxV_=O,. (3.6)

the field intensity can be written as the gradient of the magnetic potential

H = -V_. (3.7)

Since the divergence of magnetic flux density is zero everywhere

V • B=V-_0H=0. (3.8)

substitution of (3.8) into (3.7) gives the Laplace equation

V2_ = 0. (3.9)
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If thetriangularlinearinterpolationformula

qb(x,y)= _ Ni(x,y) (I)i,

i

is used to approximate the potential field and then the energy functional

= IR 1V [v_)]_ dR,

(3.10)

(3.11)

is minimized as explained in the previous report, the solution of nodal potential values is

found

--T [O O2, ON]" (3.12)Omin = 1, "'",

Using the energy from equation (4), the force can be calculated from the virtual work

principle of (1)

Fs = -- = -- dR ,. (3.13)

aS aS/ i 2Bo

where M is the total number of the elements. The Jacobian matrix can be used to transfer

the global coordinates into local ones and to map a function between global and local

coordinates

fR f(x,y)dR= In f(x(LI'L2)'y(LI'L2)) I_ dLldL2.. (3.14)
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The force then can be expressed as a function of flux density and local coordinates

= 21-to _ dLldL
OsL_

_i 0 B 2 ij_ +__ dLidL2.= . 21.to 2go -_-sJ

(3.15)

The first term inside of the integral will be

_B_ t- _. _.
3s_2_t0/ 3s

With the equations of the mapping given as

3Ll Ox 3L1

3¢13 3y
--_'4-

3y 3Lt

or in a matrix form:

3¢0 3¢13 Ox 3¢1_ 3y

3L2 3x 3L2 3y 3L2

=_ -_-xt,

(3.16)

(3.17)

(3.18)
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where the Jacobian matrix is

Ox Oy

OL1 OLz

Ox Oy

OL20L 2

(3.19)

The intensity field can therefore be expressed in terms of the inverse of the Jacobian matrix
and the derivatives of local coordinates as

so that

H-= -re = 3 --1 OL_

0¢

So from (1-14), OL2

(3.20)

0_- Oj--I

Os Os

o¢

0¢ /'

(3.21)

In order to eliminate the differential terms of¢ over L, the unit matrix is used

__ _-1)__a_ _-I+ _OJI
Os Os 3s - O, (3.22)

0s Os (3.23)
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Substituting(1-17)into (1-16),we find

OH
3s (3.24)

and then substituting (1-18) into (1-12), we finally have

tM._I _]H B2 _-sJ_]
F s = __T ]--1 + [j]-I dR• 270

Following a general routine of a calculation for the Jacobian matrix, we have

_=[ X13 Y13]X23 Y23 '

(3.25)

(3.26)

where X,Y are nodal coordinates and the following forms are used to simplify the

expression

Xij = Xi-Xj, Yij = Yi-Yj. (3.27)

With an infinitesimal displacement of the nodal coordinates, we can write

3s

AXI3 AYI3

As As

AX23 AY23

As As

(3.28)

-- and

= A(XI3Y23 - Yi3X23)

_s As
(3.29)

Geometrically, a suspension system undergoing a virtual displacement could be

represented by three parts, a region of the magnet as a fixed part, a region of the levitated

body as an entirely moving part and a free space region between the fixed and moving parts
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as a distorted part. Equations (1-21) and (1-22) are discussed separately for each of these

three different regions.

A. For a fixed element

AXij = AYij =0, (3.30)

SO

a]= ____= o. (3.31)
as as

B. For an element within an entirely moving body, the element shape will not be

changed at all, as illustrated in Fig.B5,

(2) i

J k

k

Figure B5. An element in a rigid moving body is moved from location 1 to 2.

so

where the superscript represents the moment before and after the displacement. For the

same reason,

A[XijYnj-YijXnj] = (XijYnj)(2)-(XijYnj)(I)-{(YijXnj)(2)-(YijXnj)(1)}= O, (3.34)

since

X(2) x(l) 2)_y(.1) 3((2) _A-(I) 2) 1)ij = ij' Y(nj- nj' "'nj="nj ' "Y{ij=Y(ij =0. (3.35)

So the same conclusion is reached:
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3J _ 0. (3.36)3s

Applyingtheaboveresultsfor (1-19), all thoseelementsin themovingandfixedbodies

canbeneglectedduringthevirtualdisplacement.Only thedistortedelementsneedto be
consideredfor theforcecalculation:

= -- + IJ_1 dR. (3.37)
distor. C)S

Since the distortion of the free space is arbitrarily decided, we may just take one layer of

the elements surrounding the moving part as shown in Fig.B6 where, for more accurate

calculations, the diagonals of the gap 1 and 2 are symmetrically arranged.

Figure B6. Geometry of one layer of elements surrounding the rotor where,

x_ fixed node

o_ moving node.
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If the first term of (1-23) is expanded to matrix form

terml_-Br ]- 1/)_ H-I Aa=--_9-[dPx'OPY][_)s x32Y23x13Y31]

AXI3 AY13

As As

AX23 AY23

As As

*x t,(3.38)

_Y]

where Aa is the element area, all the quantities in term 1 are known except for the derivative

of the Jacobian matrix. Since one rectangular shape consists of two triangular elements

which have different ranges of fixed nodes and moving nodes, the matrix has to be

determined separately according to the elements with odd or even numbers. An example of

the nodal range is shown in Fig.B7.

Figure B7. The range of fixed and moving nodes of the elements.

For element = 1,3,5 ........ odd numbers, if s = x, since

_ (2) (1) (2) x(l)AXi j X i -X i -(Xj- j )

Ax Ax

(3.39)

it is easy to determine that

AXI3 - 0, AX23 - -1, AYI3 -AY23 - 0.
Ax Ax Ax Ax

(3.40)
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Sowehave

0 ]
(3.41)_ _- _.[o°

Ox - J

Repeating the above calculations, we obtain the matrix for s = y

__ O°ll_ [o
Ox

(3.42)

The elements with even numbers and furthermore, the second term of (1-23), also can be

handled with the same calculation above. The final forms of the force components along x

and y-directions respectively as a summation of one layer elements are obtained as

lz _Dgo 1 2 2 3+ Z 1 2 2
--x- 2 {_d [qbx(_IxY3l+_yXl3)'t'_(_x+t_y)Y. ]even [-(_ :(qbxY23+*yX32)+2J-(Ox+*y)Y23]} '

3.43a

DI.to 1 2 2 1 2 2
3-_

Fy=--_ (Z [l_y(*xg31+(_yXl3)-_((_x+_Y )xl ]even [I_Y(l_xY23+(_yX32)@l_x+*y)X23]} '
_odd

(3.43b)

where D is the depth of the magnet.

To examine the accuracy of the equations (1-24), the magnetic suspension force of an

uniform magnet shown in Fig.B8 has been calculated and a comparison between analytical

and numerical results is shown in Table B 1.

MMF=IA x 400T

• i

/

C=0.03 lax
0

Figure B8. Test electromagnet
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TableB1.Comparisonof AnalyticalandNumericalresults

m-eayttcal
solution

Numerical one

layersolution

Numerical whole

regionsolution

Force(N)

y/c=0.0

19.68087

19.68088

Force(N)

y/c=0.7

218.67681

218.67640

CPU

1.80sec.

19.68109 218.70340 1.87sec.

Charge(S)

i.27

i.30

2. Force Calculation using Nonlinear Flux Model

The methods described above will applied to the case where the flux is determined

by Poisson's equation. The only difference is that the magnetic field is no longer current-

free and the flux density will be the curl of the vector potential

m

B = V x A. (3.44)
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If thereis only az-componentof currentdensity,then

Bx= _}--_¢,By Oq_--- ___.

Oy _x

(3.45)

The computation region for the force calculation will be one layer of elements

adjacent to the movable rotor and the final equations are expressed in the form of (1-27).

1 2 2

Fx=D--D--2120{_d [_Y(_x(X32+X 13)-_Y(Y23+Y31))+21-(d_x+_y_Y23-Y13)l

[ j+Z -(_Y((_Y Y23-_)xx32 (_x+(_y Y23 (3.46)

even

1 2 2

Fy-2l.t0-D {_dd [_x(0OY(g23+g31)-_lx(X32+X13))+_(_x+_y_X13-X23)]

+_ *x(*yYz3-¢xX3e)- ,x+qby X23 (3.47)
even

A comparison of the results of this method to those of the original method, in

which the energy contained in the entire solution region is used in calculating the virtual

work involved, and the new one is displayed in Table B2.

Table B2. Comparison of whole region and one layer calculations

One laye
calculation

Whole region
calculation

Force(N)

y/c=0.0

19.59116

19.67500

Force(N)

y_c=0.7
x/c=0.7

186.24043

186.90760

CPU

42.99 sec.

irnird8sec

Charge(S)

11.40

26.79
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Abstract

Active magnetic journal bearings are increasingly being used in a wider variety of

turbomachinery applications because their magnetic forces can be controlled and thus,

can be used to minimize any rotor vibration. However, most magnetic bearing research

has ignored the curved shape of the magnet and has consequently inappropriately

modeled its forces. By using an accurate model of the two-dimensional forces of the

curved magnets, this paper models the unbalanced rotating dynamic motion of the shaft

which is being minimized by two opposed pairs of axis independent, proportional-

derivative flux controlled magnetic bearings. The nonlinear dynamic behavior of the rotor

is then examined using the resulting equations of motion via numerical simulation and the

harmonic balance method. This dynamic analysis consists Of examining the shaft's free

vibration and its potential energy and maximum steady-state amplitude versus the natural

frequency ratio for varying control and system parameters.
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Chapter I

Introduction

A typical magnetic suspension system, see Figure 1.1, is comprised of two main

parts, the actuator and the controller. The actuator, which often consists of two

opposed pairs of magnets, see Figure 1.2, is responsible for levitating the shaft. While

the controller, which consists of the feedback sensor(s), control electronics, and

power amplifier(s), is used to regulate the forces of the actuator by using the signal

fl:om the sensor(s) and, depending on what is needed to minimize the shaft vibration,

either increases or decreases the current supplied to each of the magnets.

In recent years, this general type of active magnetic bearing has increasingly been

used in a variety of applications. They are now found in centrifugal compressors,

electric power plants, petroleum refining, machine tools, satellites and military

weapons (O'Connor (1992)). This rise in popularity can mainly be attributed to two

advantages that magnetic bearings have over the more conventional fluid film

bearings. First, because in the magnetic actuator the rotor is levitated and no contact

occurs between it and the magnets, there is practically no friction and thus, there is no

wear and no need for lubricants. The other benefit of magnetic bearings is that they

have the ability to minimize any shaft vibration. In recent years, this control of the

shaft vibration has been the main topic of most of the magnetic suspension research
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and has focused on two distinct subareas:

1. The most suitable controller and control strategy

2. Theoretically investigating the effectiveness of the control scheme.

In trying to determine the optimal magnetic bearing control system, most

researchers have experimented with digital and analog controllers and variations on

proportional-derivative (pd) schemes. For example, Williams et al. (1991)

experimentally compared the differences of using digital and analog pd controllers to

reduce the amplitudes of a multi.mass flexible rotor. They found that in both control

systems, increasing the stiffness tended to decrease the response at low speeds and

increase the amplitudes at high speeds and increasing the damping minimized the

maximum displacement for every forcing frequency. Williams et al. (1991) also

concluded that including second derivative feedback in a digital pd controller gave

the system a wider bandwidth while introducing integral feedback only affected the

amplitude at the first critical speed. The possibility of using a digital pd controller

was also experimentally examined by Scudiere et al. (1986); however, in their system

the previous inputs were given uneven weight. The results showed that when the most

recent inputs are heavily weighted the output responds slowly but is very smooth and

that if the previous inputs are given less weight then the motion becomes less damped

but responds much more quickly.

The other popular magnetic bearing research topic is to theoretically investigate

controlling the motion of a flexible rotor with a magnetic bearing. Lee and Kim

(1992) designed a suboptimal output feedback controller based on a truncated modal

equation of the distributed parameter system. This control scheme minimized the

displacement at the fin'st critical speed but was inadequate at other supercritical

frequencies. Nonami et al. (1990) experienced similar problems at high frequencies as

Lee and Kim (1992). Their flexible rotor model was based on the finite-element
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methodandthecontrol schemewasformulatedby usingeigenvalueanalysis.Maslen

and Bielk (1992) also examinedthe stability of a rotor supportedby a magnetic

bearing. They took into account sensor-actuatornoncollocation and controller

bandwidth;however,theperformanceof themodelwasnot tested.

However,with theexceptionof Imlachet al. (1991)andKnight et al. (1992) there

has been very little research completed which has measured the forces of the magnet.

Imlach et al. (1991) compared predicted stiffness and force values in a closed-loop

controlled magnetic bearing with their experimental counterparts. The agreement was

good at small eccentricities; however, as the eccentricity increased the predicted and

measured values began to diverge. Knight et al. (1992) also measured the forces from

a magnet. They found that a single curved magnet produced forces in both the

horizontal and vertical directions and that the horizontal force, assuming that the

center of the magnet is situated directly on the y- or vertical axis (see magnet one in

Figure 1.2), is proportional to the vertical force multiplied by the horizontal

displacement. Most magnetic bearing papers, including Lee and Kim (1992), Nonami

et al. (1990) and Maslen and Bielk (1992), have ignored this additional force

component in their formulation of the vibration of the rotor.

This thesis will show that including the often ignored normal force of a curved

magnet in a magnetic bearing model will cause the motion of the unbalanced shaft to

be significantly different than was previously estimated by earlier linear models. This

will be accomplished by first using the conclusions of Knight et al. (1992) to derive

brand new equations of motion for a shaft which is encircled by a flux controlled

magnetic journal bearing, chapter 2. Then in chapter 3, the resulting coupled,

nonlinear equations of motion and two techniques, numerical simulation (fourth-order

Runge-Kutta) and the harmonic balance method, will be used to examine how the

introduction of the normal force component changes the potential energy and
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dynamicmotionof theshaftfor varyingcontrol aswell asphysicalparameters.In the

final section, chapter 4, the results from these two chapters will be briefly

summarizedandsomesuggestionswill bemadeconcerningfuturework.
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Chapter 2

Modeling Shaft Vibration

The magnetic bearing model used in the upcoming analysis is comprised of a

shaft and two opposed pairs of flux controUed magnets, see Fig-u.re 2.1. Each of the

Coils

Figure 2.1: Magnetic beating and shaft coordinate system.

magnet pairs is identical and is subjected independently to proportional and

6
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derivative axiscontrol. In addition, the circular shaftis beingexternally rotatedand

its centerof massis not necessarilycoincidentwith its actualgeometriccenter.This

rotating unbalanceof the shaft, in addition to the forcesof the magneticactuator,

causetherotor to vibrate.The foUowing sectionmodelstheseforcesandthe motion

of the shaft, nondimensionalizesthe resulting equationsand analyzesappropriate

parametervalues.

2.1 Dimensional Equation Derivation

The magnetsin Figure 2.1 are labeledonethrough four. In the initial portion of

the equation derivation, the opposedpair two and four will be ignored and full

attentionwill begivento theforcesfrom themagnetpair of oneandthree.

2.1.1 The Vertical Forces of Magnets One and Three

The y-directional forces of these two magnets, Fy 1 and Fy 3, are approximated by

one-dimensional magnetic circuit theory and are written as

and

Fy 1 = _ (2.1)
go

Fy 3 = -_ (2.2)
go

where B is the magnetic flux density of each magnet, a is the cross-sectional area of

the pole face and go is the permeability of the free space. The total vertical force

produced by the pair of one and three is simply the sum of (2.1) and (2.2),
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Fyl3 =
go

Both flux densities in this expression are equivalent to the sum of their bias and

control flux densities, denoted by subscripts b and c respectively,

and

B 1 = Blb + BI, (2.3)

B3 = B3b + B3c , (2.4)

and can be replaced to give

a

Fyl3 = _oo [(Bib + BIt) 2 -(g3b

Since both magnets are identical, their bias flux densities must also be equivalent,

Blb= B3b = B b. The control flux densities of the two magnets however, will have

opposite signs, Blc= -B3c = B c, so that each magnet will force the shaft toward the

origin. By replacing Blb, Blc, B3b and B3c in equation (2.5), with their equivalent,

either B u or B c, expanding the bracketed terms and simplifying, Fy13 can be

rewritten as

Fy13 = 4aBbB ¢. (2.6)
go

The control flux, Be, is a function of the vertical displacement, y, and velocity, _,, the

bias flux density, Bb, the proportional control coefficient, K:, and the derivative

8
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control coefficient,7, andis equivalentto

Bc = --KBby- 7Bb_. (2.7)

Replacing B e in equation (2.6) with (2.7) yields the most useful representation of the

vertical force caused by the magnet pair one and three,

Fy13 =- 4a B2D(_ + _/_). (2.8)
go

2.1.2 The Horizontal Forces of Magnets One and Three

It was stated earlier, that Knight et al. (1992) found that a curved magnet

produced a normal force (in the x-direction for magnets one and three and in they-

direction for magnets two and four) which was proportional to its normal

displacement multiplied by the principal force (the force perpendicular to the normal

force) of the same magnet; thus, the x-directional forces from magnets one and three

can be written as

and

Fxl = oqx]Fyl[ (2.9)

Fx3==:IF:[ (2.10)

where oq and ot3 are the normal force proportionality constants and x denotes the

horizontal component of displacement. The totai x-directional force from these two

magnets is simply obtained by summing (2.9) and (2.10),
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Fxl3= x((XllFyl[+ (x3lFy3D.

Becauseboth magnetsare identical, and therefore must have the samephysical

properties,oqand c_3 canbereplacedby c_to give

Fxl3= o_x([Fyl]+[Fy3D.

Fxl3 canbe rewrittenas

:Fxl3

by substituting the absolute of equations (2.1) and (2.2) for Fy 1 and l::y 3. It is also

useful to substitute (2.3) and (2.4) for B 1 and B3,

go
(2.11)

This expression can be further reduced by replacing each flux density term with its

respective equivalent, either B b or Be, and simplifying,

2a _ t,.,2
Fxl 3 =--(xx_/5 b + Be2).

_to
(2.12)

Finally, replacing the control flux density in (2.12) with (2.7) and expanding puts

Fxl 3 in its most practical form,
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Fxl3 = 2ac_xB2(1+ 1,:2y2 + 21c'/y_+ ,_2_,2).
Ixo

(2.13)

2.1.3 All Other Forces Acting on the Shaft

A similar procedure can be used to obtain the vertical and horizontal magnetic

forces from magnets two and four,

and

2a
_"2 (1 + K2X 2 + 21_x_ + 7222)"Fy24 =--c_y_ b

go
(2.14)

4a-20cx +_). (2.15)Fx2 4 =-_B b
go

These two equations, along with (2.8) and (2.13), represent an accurate mathematical

description of the forces from the magnetic actuator which act on the shaft. The shaft

however, will also be subjected to an additional force which results from it being

rotated and its mass being unevenly distributed. This additional load is analogous to

rotating unbalance in rotor dynamics and its components can be written as

meco 2 sincot, in the y-direction, and meco 2 coscot, in the x-direction, where m is the

mass of the shaft, e is the distance from the geometrical center of the shaft to its

center of gravity and co is the forcing frequency. By applying Newton's second law of

motion, Y,F = ma, in each direction, the nonlinear, coupled equations of motion

which describe a shaft that is unbalanced, rotating and subjected to flux controlled

magnetic fields are obtained,

m_ =- 4a B_[k3, +'1_-2Y(1 + _2x2 + 2k_xS_ + y222)] + mec0Z sin _t
go

(2.17)
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m_- - 4a _2FL _ _2y2 )l +mere2 coscot (2.18)_x + T2 - x(l+ + 2wCy27 + y2S ,2
-- go _b "/

In both of these equations, note that all of the linear displacement and velocity

terms are a direct result of the principal forces of the four magnets (the forces which

can be modeled using one-dimensional magnetic circuit theory). In contrast, the

normal forces are responsible for every coupling and nonlinear term in (2.17) and

(2.18); thus, including the normal forces in the equations of motion of the shaft

introduces the system to instabilities by decreasing its linear restoring forces, i.e.

malting it less stiff.

2.2 Nondimensionalization of the Equations of Motion

To make the upcoming analysis easier and the results more physically

meaningful, (2.17) and (2.18) will be nondimensionalized by replacing the variables

in both equations with the following,

x = Xc y = Yc

t = T/c0 n 0.) = f2 / con

_: = K/c y = r'/coo n

co=Ale e=Ec,

where all capitals represent the nondimensional quantities, c is the radial clearance

between the rotor and the inner surface of the controlling magnets and the uncoupled

natural frequency (co = O) is equal to

12
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(2.19)

Making these substitutions results in the following ordinary differentia/equations,

and

cmm2n Y" =

cmo_X" =

4aB_ (Ky + 1-'y' - Ay(1 + K2X2 + 2KrXX' + 1"2X,2))_to

+ cm0_2nEf22 sin C2T

IXo

+ cmm2nEf2 2cos f2T

where a prime denotes differentiation with respect to nondimensional time. By

dividing both of the two previous expressions by cmm2n and replacing the remaining

squared uncoupled natural frequency terms in the resulting equations with (2.19)

gives

4acm_3Xo B2

and

x 4 ( +  x(x+ 2y2+2 +r2y2/)+Eo2oos T4acm_:l.toB _

The most useful forms of the nondimensional equations of motion are obtained by

canceling all like terms and replacing c_: with K,
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Note that, in obtaining(2.20) and(2.21),c andtheuncouplednatural frequency,

con, were chosen as the two variables which were used to aid in the

nondimensionatizafion of equations (2.17) and (2.18). Both variables were selected

over other parameters for different reasons. First, the choice of c allows the dependent

variables in the governing equations of motion to become X, X, Y, Y and T. As a

result, the numerical solution becomes more meanin_ul, because both X and Y, x / c

and y / c respectively, are real physical properties and both are constrained to remain

within the range of negative to positive one. In contrast, con was chosen as a

nondimensionaLizing parameter because it will present the least amount of problems

in the following analysis. Its only real drawback is that when the dimensionless

normal force proportionality constant is varied, _ will not shift with it. Fortunately,

because A is generally much smaller than K (their magaaitudes will be discussed in

the next section.), the actual shift in the forcing frequency ratio due to varying A is

extremely small. The only other reasonable choice to use in place of con is the linear

natural frequency,

Although this would allow the effect of A on _ to be incorporated into the solution

of (2.20) and (2.21), it would also mean that the equations of motion would have

14
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1/_K-:_) in place of both of the 1/K and thus, somevalues would become

cumbersome.Forexample,theuncoupledstiffnesswouldchangefrom avalueof one

2.3 Appropriate Variable Ranges

A significant part of the upcoming analysis is to examine how A, K, F and E

affect dynamic behavior of the unbalanced rotating shaft. This will be accomplished

by varying the four parameters within the following practical limits.

The dimensionless normal force proportionality coefficient, A, for a single

mag-net was determined by Knight et al. (1992) to be approximately equal to 0.15. Its

value for opposed magnets was less exact, so during the analysis, it will be varied

from 0.05 to 0.25. The values of the dimensionless proportional and derivative

control coefficients, unlike A, are less defined, although their selection does affect

certain bearing properties and must be chosen accordingly. For example, magnetic

bearings are often characterized by low damping; thus, to achieve an uncoupled

damping ratio, F/2K, of 0.1 to 0.3 for a K equal to one, F must fall within the

range of 0.2 to 0.6. K on the other hand is inversely proportional to the uncoupled

damping ratio, so it would be advantageous to have large values of K which would

decrease the damping in the bearing. Unfortunately, K is also equal to the inverse of

the available displacement before the magnetic force becomes zero for F = 0, so to

balance the two competing effects, K in the upcoming analysis will be limited to

values under five. The fourth and f'mal variable to consider, the nondimensionalized

mass eccentricity, is dependent on the imperfection of the shaft, e, and the distance

from the rotor to the magnet, c. Generally, e, the dimensional rotating mass
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unbalance, is an extremely small number compared to c; however, c is solely

dependenton the magneticactuatordesignand in someinstancesmay also bevery

small. It is unlikely, nevertheless,that in a magneticactuatormagnitudeof e will

approach that of c. A more reasonable situation is that the dimensionless mass

unbalance is going to be equal to or less than 0.05; however, to be on the safe side, E

will be given values as high as 0.15.
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Chapter 3

Results And Analysis

3.1 Potential Energy

If it exists (or can be derived), a useful tool in many dynamic analyses is a

graphical representation of the potential energy, V, of the system. The dimensionless

potential energy, which can be derived from the restoring forces in the conservative

form of the governing equations, is

(3.1)

In addition to the vertical and horizontal displacements, note that V is a function of

A and K. Consequently, fluctuations in either variable should lead to changes in the

form of the potential energy.

As A is increased from 0.05 to 0.25, with K held fixed, the potential energy

wells, Figures 3.1a to 3.1c, become increasingly shallow. Thus, as expected, when the

dimensionless normal force proportionality coefficient is increased the deviation of

the potential energy from the linear case becomes more pronounced. This deparn_e

from the linear case is also increasingly evident at larger displacements. Also note
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Figure 3.1: Potential energy wells where K=3 and a. A=0.05 b. A=0.15 c. A=0.25.
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that in Figure 3.1 the potential functions, unlike some nonlinear systems, do not

contain any unstable regions, i.e. a local maximum, and only have one equilibrium

point, the origin, within the physical system.

If K is now varied while A is held constant, Figure 3.2, the changes in the

potential wells are similar to those observed in Figure 3.1. This may be somewhat

surprising given the fact that typically, when something thought to be analogous to

stiffness, such as the dimensionless proportional control coefficient, is increased, an

increase not a decrease in stiffness should occur. However, it is important to

remember that because of the nondimensionalizadon, the linear stiffnesses in (2.20)

and (2.21) are equal to 1 ---A and thus, a reasonable increase in K will only affect
2K

the potential wells slighdy. If K is now increased to twenty, Figan'e 3.3, there exists

the possibility that the mass can enter an unstable area at high absolute values of X

and Y. In the magnetic actuator, the likelihood that K will reach such a high

magnitude is small; however, if the physical boundary of the dynamic system is

increased, then the unstable equilibrium points corresponding to

. /2K-A + ]2K_-_A
(X,Y)=(_-_ AK 2 ,--_ AK 2 )

will need to be avoided.

3.2 Dynamic Motion of the Shaft

In the following two sections, two different techniques will be used to examine

the free and forced nonlinear dynamic behavior of the circular shaft and the effects of

K, A, F and E on this motion. The initial analysis will be based on the Runge-Kutta
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routine which is a highly accurate numerical method for solving differential equations

and is described in Appendix A. In the second section, the results will be calculated

using an approximate but sometimes extremely valuable analytical technique called

the harmonic balance method.

3.2.1 Runge-Kutta Method Free Vibration Results

Often when investigating nonlinear systems, such as a pendulum undergoing

large amplitude swings, it is useful to examine how the natural period changes with

amplitude. Unfortunately, explicitly solving for the natural period in this case cannot

be achieved because of the nonlinearity in the equations of motion of the shaft.

However, by using numerical simulation, an accurate estimate of the natural period of

the shaft as a function of the initial conditions can be obtained. An additional tool in

the consmaction of these graphs is to use the symmetry of the system. For example, in

Figure 3.3, the quartered section where both X and Y are positive, call it region one,
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has the sameshapeasthe otherquartersof the well andwithin region one, its two

halvesaremirror imagesof eachother.Becauseof this symmetry,only aneighthof

the initial conditionsneedto be analyzedto garnera completeunderstandingof the

total behaviorof thesystem.Theseinitial conditionsaredefinedas

and

Yo = Rsin_

Xo = Rcos_

where R is the nondimensional radial distance of the shaft and qb is the angle

measured from the x-axis to the radial distance vector, see Figure 3.4.

X

y

Figure 3.4: Summary of natural period initial conditions.

In Figure 3.5a, q_ is fixed at 22.5 degrees and the radius is increased from zero to

one while both of the initial velocities are held at zero. For each increment in R the

natural period ratio, I:, for both displacements is determined by measuring the time

between consecutive peak amplitudes and by dividing this result with the linearized

natural period, 2r_/._1--_A Unlike the linear case, the "_ of both displacements is
V- 2K'"

initial condition dependent and the values of the two natural period ratios diverge and

22



C33

1.10_

0.0 0.2 0.4 R 0.6 0.8 1.0

1.025 -

1.020 -

1.015 -

1.010-

1.005 -

1.000 -

0

I I I I
10 20 30 40

(Degrees)

Figure 3.5: Numerically obtained natural period for K=3, A=0.15, a. d_=22.5 and varying R
b. R=0.5 and varying _b.

23



C34

thus become more nonlinear as the radius increases. If the radius is now held fixed at

0.5 and x for both X and Y is measured for each increment in 4, a graphical display

of the angle versus the ratio is obtained, Figure 3.5b. Only when qb is equal to

(2n -1) radians, where n is any integer, is there any agreement between the natural

period ratios of the two displacements. At every other angle the ratios are different

suggesting that the undamped, unforced motion of the shaft will not repeat every

period like the linear system. Instead, the behavior, see Figures 3.6a and 3.6b, will be

analogous to beating, which occurs in harmonically forced linear systems where the

natural and forcing frequencies are extremely close but not exact, and results in a

trajectory which is not an ellipse or a circle but is closed and passes over a large

portion of area, Figure 3.6c.

3.2.2 Runge-Kutta Method Forced Vibration Results

A useful tool for investigating how the nonlinearities affect the rotating dynamic

behavior of the shaft over ranges of system parameters is to construct amplitude

response curves for varying values of K, A, F and E. This graph plots the maximum

steady-state nondimensionalized horizontal and vertical displacements versus the

frequency ratio, f2 and Figures 3.7 to 3.15 are obtained by numerically simulating the

nondimensional equations of motion and by picking off both maximum

displacements after 400 cycles (to allow for transients to decay). Unfortunately,

contrary to their linear counterparts, the maximum amplitudes in nonlinear systems

axe initial condition dependent. Thus, to make the analysis easier, all of the following

amplitude response curves will be constructed using the initial conditions

X(0) = Y(0) = X(0) = "_'(0) = 0, the rest state, unless stated otherwise.

A comparison of Figures 3.7a to 3.7c, amplitude response curves where only K is
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varied, yields some interesting results. First, as the dimensiorfless proportional control

coefficient is increased the amplitudes grow, especially near resonance. This behavior

may be somewhat surprising if K is again thought of in terms of stiffness or

proportional feedback; however, because of the nondimensionalization of (2.20) and

(2.21), K is actually more closely related to the inverse of the uncoupled damping

ratio, F/2K, in each equation; therefore, the growing amplitudes near resonance

make sense for increasing values of K. The most surprising feature of graphs 3.7a to

3.7c is the difference in the maximum amplitudes of X and Y for K = 5. In the

analogous uncoupled linear case, A = 0, the maximum amplitudes are identical,

Figure 3.8; thus, the amplitude split in Figure 3.7c can be attributed to the

nonlinearity of the equations of motion. It is not completely surprising that this

behavior only occurred when K was large. For increased values of K, larger

amplitudes are expected and earlier, while examining the potential wells, larger

displacements meant the nonlinearity Of the equations became more pronounced.

The time series, trajectories and phase projections of the nonlinear and linear

K = 5 cases at comparable frequency ratios, Figures 3.9 and 3.10 respectively, yield
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some further interesting behavior. (Note that Figures 3.9 and 3.10 are at different

values of f2, this is necessary because o_ was not included in the selection of con.) As

expected, in the linear time series, Figure 3.10a, the maximum amplitudes are r_/2

out of phase. This however is not mac in the nonlinear case, Figure 3.9a.; therefore,

when one component of displacement is at its maximum the other has a nonzero

value and the path resembles an angled ellipse. In addition, the maximum radial

amplitude in the nonlinear case, Figure 3.9b, is larger thus increasing the likelihood

of the rotor striking the magnetic actuator. It should be noted that, although the actual

maximum amplitudes and the transient motion in Figures 3.7 to 3.10 and some of the

subsequent graphs axe well outside the physical limitations of the bearing, it is

beneficial to examine these cases because they provide a better dynamic

understanding of the system and may prove even more useful if the amplitude

restriction is somehow changed.

In Figures 3.1 la to 3.1 lc, every variable except the normal force proportionality

constant is fLxed. In each of the three graphs the amplitudes tend to decrease only

slightly and the peaks and the entire plots tend to be slightly shifted to the left for

increasing A. Once again this shift in amplitude is purely a function of what natural

frequency is used in the nondimensionalization of the equations of motion. If K:-

replaced _: in equation (2.19) then no shifts would occur in Figures 3.11a to 3.11c.

The major difference between the three graphs is, in the third graph, Figure 3.11c,

another amplitude split occurs. However, unlike the two distinct maximum

amplitudes in Figure 3.7c, these different amplitudes result because for greater values

of A the system will deviate more from the linear case, recall Figures 3.1a to 3.1c.

Unlike K and A, F must be decreased for the maximum X and Y displacements

to split. Actually, the effect of the dimensionless derivative control coefficient on the

amplitude response curves, Figure 3.12a to 3.12c, is extremely similar to the
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influence of 1/K on Figures 3.7a to 3.7c; in that any increase in F results in smaller

maximum amplitudes especially near resonance. This relationship between the two

variables is not surprising because the uncoupled damping ratios in the equations of

motion axe equal to F/2K. In Figure 3.12a, unlike any other plot up until this point,

an additional solution occurs directly to the left of the amplitude split. This tiny

branch of solutions was found using different initial conditions from the traditional all

zeros. Instead, the frequency ratio was slowly decreased from 2.5 and the starting

values for each decrease in f2 were obtained using steady-state data from the

preceding frequency ratio. Using this method, the alternate solution was tracked until

approximately f2 -_-0.8875. At that point, the only solution that could be located was

the one where the two maximum amplitudes agree. It is also likely that an unstable

curve exists from the lowest frequency ratio of the alternate solution to the initial

point of the ampLitude split, f2 =_0.9125. Tracking this unstable motion using present

path-foLlowing algorithms is however beyond the scope of the current work. Also,

because of the high complexity of investigating every initial condition, no specialized

attempt will be made to locate other possible stable solutions.

A more complete picture of how A, F and K, because of its close inverse

relationship to F, change the amplitude response curves and thus the dynamic motion

of the rotor, is shown in Figure 3.13. The results confLrm the previous analysis. An

increase in the normal force proportionality constant will cause a slight decrease in

amplitude but an increased probability that the maximum amplitudes will not be

identical near resonance and that an additional solution will appear before resonance.

Decreasing F as well as increasing K mainly cause an increase in the amplitude near

resonance and an increase in the likelihood of an amplitude split.

From a design standpoint it is also important to investigate how the eccentricity of

the shaft affects the amplitudes at given frequency ratios, Figures 3.14a to 3.14c.
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Because E is proportional to the external rotating unbalance forcing amplitude, any

increase in it results in an almost proportional increase in maximum displacement for

a given f2. Thus, as E gets larger, the displacements increase and an amplitude split

becomes more likely, Figure 3.14c. If the initial forcing phase of the system is now

varied, the results in Figure 3.14 and all of the other previous graphs will remain

generally the same. The one exception is that for some initial forcing phases the

amplitudes and phase shifts of X and Y may be interchanged.

Other interesting, nonlinear behavior besides the amplitude jump can occur with

the governing equations. For instance, in Figure 3.15, an amplitude response curve

where K = 3, A = 0.175, F = 0.2 and E = 0.2, at approximately/2 -_-0.9 and again

at /2 = 0.9875 there exists multiple maximum amplitudes for the given frequency

ratios. At both frequency ratios, the maximum X and Y displacements fluctuate from

period to period, Figures 3.16a and 3.17a, suggesting either chaotic or quasi-periodic

motion (Thompson and Stewart (1986)). In order to correctly classify this behavior it

is necessary to complete a spectral analysis of the time series data using the Fast

Fourier Transform (FFT). The FFT converts 2 N, where N is any positive integer,
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equally spaced discrete data points, making sure that there are at least two points per

highest forcing period, to a frequency based domain using the Fourier Transform.

After the data has been changed to its new domain, it will only have significant

amplitudes at various combinations of its forcing frequencies. Thus, with the FFT, it

is possible to classify any motion as periodic, one forcing frequency, chaotic, infinite

forcing frequencies (also known as a broad-banded solution), or, as in the case of

Figure 3.16 and 3.17, quasi-periodic, two or more driving frequencies.

3.2.3 Harmonic Balance Method Forced Vibration Results

The dynamic behavior of the circular shaft can also be analyzed using an

analytical method called haxmonic balance. This technique predicts the steady-state

response of the system by assuming solutions of the form

and

Y = Ccos_T + Dsinf2T

X = Gcosf2T + Hsin f2T

(3.4)

(3.5)

where C, D, G and H are unknown constants. Substituting (3.4) and (3.5) and their

fn-st and second derivatives with respect to nondimensional time, T, into (2.20) and

(2.21) yields the fu'st two equations shown in Appendix B. Both equations can be

simplified by expanding, replacing the higher powered terms with their appropriate

trigonometric relations,

cos3e = -14(3cosO+ cos3O) sin 3 0 = l(3sinO + sin30)
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cos2OsinO= 1(sin O- sin30) cos0sin2O= 4(cosO- cos3O)

and neglecting the higher harmonics.SeeEquationsB.3 and B.4 in Appendix B.

Next, the necessary equations needed to solve for the four unknowns, C, D, G and H,

result by separately grouping all of the cosf2t and sinf2t terms in B.3 and B.4 and

setting them equal to zero (balancing the harmonics).

However, due to the coupling and higher-order terms in the resulting governing

equations, B.5 to B.8, the constants cannot be solved for analytically. Instead, they

must be determined by using a numerical procedure called Newton's method for

nonlinear systems. The method of solution for this technique is analogous to the more

well known Newton-Raphson method. Both methods use an initial guess of the

unknown(s), the partial derivatives of the function(s) and iteration to converge

quadrically on a local solution. In cases where multiple solutions exist, however, the

result can be solely dependent on the starting values of the unknowns and thus,

different initial guesses may yield different results. This however makes it possible to

locate a variety of approximate analytical solutions for given K, A, F and E by

simply choosing different initial guesses for C, D, G and H.

Since the approximate analytical approach ignores all higher harmonics, it is

necessary to examine if, in this case, the technique yields valid results. This can be

accomplished by simply comparing graphs which are constructed using the

approximate analytical approach, Figures 3.18a and 3.19a, with graphs which are

obtained using numerical simulation, Figures 3.18b and 3.19b. The first two graphs

plot the displacement versus the frequency ratio, f2, at any steady-state

nondimensional time nT_, where n=0,2,4, .... and Figures 3.19a and 3.19b plot the •

velocity versus the f2 at the same time, n_:. Both sets of graphs are almost identical,
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suggesting that the approximate analytical approach does provide an accurate

description of the steady-state dynamic behavior of the shaft. As an additional check,

an amplitude response curve with the same parameters as Figure 3.12a can be

constructed using the approximate analytical approach, Figure 3.20. A quick

comparison of these graphs continues to strengthen the validity of the approximate

analytical approach because the plots are almost identical with the exception of a

third solution near resonance in Figure 3.20. The absence of this additional solution

in Figure 3.12a can be simply attributed to the fact that it is probably unstable and

numerical simulation can only be used to locate stable solutions.

3.2.4 Limiting Shaft Displacement for Varying Parameters

Ideally, the unbalanced shaft displacement should be minimal and at worst it

should never come into contact with the bearing. Thus, for certain values of K, A

and F it is beneficial to know what nondimensionalized eccentricities will cause a
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specified unwanted displacement and what effect varying each parameter has on these

eccentricity values. Figure 3.21a, which was constructed using the approximate

analytical approach, is a plot of the lowest eccentricity value which causes the

amplitude of either X or Y, Xma x, to exceed 0.4, 0.7 and 1.0 versus the frequency

ratio for K = 3, A = 0.15 and F = 0.4. As expected, the allowable nondimensional

eccentricity for each specified amplitude is smallest near resonance and largest as

f2 = 0 is approached. Somewhat surprising however is that below f2 = 0.75, the

curves are identical. At these small frequency ratios, the lowest eccentricity value

corresponds to the smallest E which causes the amplitudes to split. In each case

below f2 = 0.75, the amplitude of X or Y for these eccentricities is always greater

than one and as a result, the curves coalesce. The final noteworthy point of Figaxre

3.21a is the presence of a kink, which is denoted by an arrow, in the Xma x = 1.0 case.

This bend only occurs in large maximum amplitude cases because for large

displacements, the amplitude response curves wii1 not be smooth, as indicated by

Figures 3.7c, 3.12a and 3.14c.

The next three graphs, Figures 3.21b, 3.22a and 3.22b, continue to have the

lowest E and f2 as the abscissa and ordinate variables; however, the amplitude limit

is no longer the third variable. Instead, either K, A or F, depending on the plot,

becomes the last parameter. As for the maximum allowable amplitude, it has been set

at 0.4 in each graph because, typically, the displacements should be kept as small as

possible. In the first of the three figures, the nondimensional proportional control

coefficient has been increased from one to five. As anticipated, when f2 ; 1, the

smaller the K, the larger the eccentricity needs to be for either of the displacements

to become 0.4, recall Figures 3.7a to 3.7c. It also makes sense that at high values of

f2 there is very little difference in the required E; however, according to the

amplitude response curves this same behavior is also expected at low frequency
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ratios. But as stated in the previous paragraph, at small frequency ratios the lowest

value of the nondimensional eccentricity is dependent on the lowest E at which the

amplitude split occurs. And for varying K, these values are different, Figure 3.23. In

examining Figure 3.23, it is also important to recognize that for increasing values of

K greater than five, there exists a range of frequency ratios where the amplitudes

decrease and a larger E would be required to cause a specified displacement.

Although this only occurs for values of K which induce a split, the entire behavior is

completely contrary to any other previous results and would actually mean that if

K = 6 and K = 7 were included in Figure 3.21b their solutions would cross. In Figure

3.22a, the derivative control coefficient has replaced K as the third parameter.

Because the effect of F on displacement is almost identical to the influence of 1 / K

on the same variable, see Figures 3.7 to 3.12, Figures 3.21b and 3.22a exhibit similar

results for the same reasons.

Finally, the effect of the normal force proportionality constant on the lowest
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eccentricity value which causesthe maximum displacementof either X or Y to

exceed0.4 is examinedin Figure3.22b.For mostof thefrequencyratios, anychange

in A resultsin little or no changein the lowest eccentricityvalue.This agreeswith

the resultsfrom theearlieramplituderesponsecurves,Figures3.11ato 3.11c,where

an increasein A meantlittle changein amplitude.However, onceagain, at small

frequency ratios the lowest value of eccentricity doesnot relate to the amplitude

responsecurvesbecause,as in the caseof K and F, the value at which the split

occursvariesfor achangingA.

Eachof the graphs,3.21a,3.21b,3.22aand 3.22b, were constructedusing the

approximateanalyticalapproach.Although it hasbeenshownthat this techniqueis

soundwhenexaminingsteady-statebehavior,it doesignore transientmotion which

may besignificantespeciallyif therotor is startedfrom rest.Thus,if escapefrom the
2K-A

potentialwell, definedasthe magnitudeof X and Y exceeding at the same
AK 2

nondimensional time, T, occurs before the onset of steady-statebehavior, then

Figures3.21 to 3.22arerenderedinappropriate.It shouldbenotedthat thetransient

behaviorwill actuallycausethe shaftto strike the bearingbeforeescapecanoccur,

unlessK is unreasonablyhigh, thus changingthe equationsof motion of the shaft,

seeFigures 3.2 to 3.3. This modification of the equationshas beenignored in the

upcominggraphicalanalysis;however,for a systemwith largerphysicalboundsthe

forthcomingfiguresareappropriate.

Figures3.24 and3.25 display the nondimensionaleccentricities,for a rangeof

frequencyratios, which causeescapeduring the In'st one hundreddynamic cycles,

after which transientmotion hasbeenassumedto havedied out. (This is usuallybut

not necessarilythecase.)Comparingtheresultsobtainedin Figure3.22awith Figures

3.24aand3.25, it is evident that the lowest eccentricity valueswhich causeescape

during transientmotionarealwayslargerthanthevalueswhichcausethe steady-state
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amplitude to exceed 0.4. Thus, Figures 3.21 to 3.22 are valid.

The Figures 3.24a and 3.25 are themselves noteworthy. First, in both graphs there

is not a solid line which separates escape eccentricities from nonescape eccentricities

and the boundaries which do exist are fractal (CfiUy et al. (1991) and Feder (1988)).

For instance, in Figure 3.24 as the resolution of the graph increases the boundaries

change and if these escape boundaries are zoomed in upon further and further then

the ffactal behavior of the plot will continue infinitely, fit is possible to calculate the

noninteger dimension of these boundaries, however, due to the time constraints of

this thesis it was not attempted.) The actual shape of either graph is extremely

complex as well, with gray areas, denoting escape between four cycles and one

hundred cycles, often occupying regions which are completely surrounded by black

sections, escape within the first three cycles, see Figure 3.24b. Yet each plot tends to

exhibit expected behavior. For example, when the derivative control coefficient is

increased the shape of either graph generally remains the same except the escape

eccentricity decreases for all frequency ratios. Also, the minimum value of E in both

graphs occurs near resonance, and at low frequency ratios, extremely high

eccentricities are necessary for escape. Varying K and A does not produce any

unexpected results either, Figure 3.26. Once again, the graph tends mainly to shift

downward. The one unexpected and definitely nonlinear quality of Figures 3.24 to

3.26, is the fact that for increasing F, thus damping, the minimum E tends to move

towards a lower frequency ratio. This agrees with the nonlinear large amplitude

motion of Figure 3.23; however, in linear rotating unbalance and even in the

magnetically controlled shaft where the damping ratio is sufficient2y high enough that

the system is close to being linear, Figure 3.27, the maximum steady-state amplitude

tends to move to the right for increasing F.
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Chapter 4

Conclusions and Further Work

Recent active magnetic bearing research determined that curved magnets produce

forces which are two-dimensional. Using this conclusion, this dissertation has

accurately modelled the proportional-derivative flux controlled forces of the magnetic

bearings and the motion of an unbalanced rotating shaft which is being minimized by

these magnetic forces. The resulting governing equations are coupled and nonlinear

and exhibit important atypical dynamic behavior such as quasi-periodic motion and

hysteresis. In addition, the nonlinear terms also introduce the possibility of having

unstable motion within the actuator and it is also possible that near resonance and

with either large displacements or a large normal force proportionality constant, that

the steady-state maximum amplitudes may not be identical and multiple different

larger amplitude solutions may exist for a given set of parameters. Variations in any

one of these parameters tends to affect the dynamic motion differently; however,

generally, any increase in the nondimensional proportional control coefficient, K, or

the nondimensional rotating unbalance, E, or decrease in the nondimensional

derivative control coefficient, F, will cause an increase in amplitude and thus,

increase the possibility of introducing the unwanted nonlinear behavior. An increase

in A, the dimensionless normal force proportionality constant, will not increase the

53



C64

amplitude; however, it will make the nonlinear larger amplitude motion more

probable.

Furthermagneticbearingresearchstill needsto becompletedin two areas.First,

becausean increasednondimensionalnormal force proportionality constant can

introduce unwanted nonlinear behavior without any change in amplitude, it is

necessaryto further examine its specific value in opposedpairs of magnets.In

addition,thepreviouslypresentedresultsneedto beexperimentallyverified.
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Appendix A

Runge Kutta Method

The fourth-order Runge-Kutta method is the most popular numerical technique

that is used to solve nonlinear ordinary differential equations because it strikes a

balance between the computational complexity and accuracy of the solution. The

derivation of this method can be found in any numerical analysis text and yields the

following formulas for two coupled, first-order differential equations,';, = f(t,v,x)

and _ = g(t,v, x),

Vn+1 = v n + 6(K1 + 2K 2 + 2K 3 + K4) (A.1)

Xn+ 1 = x n + 6(Li + 2L 2 + 2L 3 + L4) (A.2)

where h is the time step, n is any integer, v 0 and x 0 are known and

K1 = f(tn,Vn,Xn)

K 3 =f tn+- +-- xn+2 'vn 2 '
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K4 = f(t n+h, vn +K3,x n +L3)

L1= g(to,v ,x )

L2 = g(t n +'2'vnh +-_k,x n +-__k)

L3 = g(tn +h,vn +--_,Xn +-_- )

L 4 = g(t_ + h,v n + K3,x n + L3)

When the two coupled equations of motion are second-order, it is necessary to put

each into state space form,

*=w ±=y

= f(t,v,w,x,y) _' = g(t,v,w,x,y)

The same general theory can now be used to solve these four coupled first-order

equations,

Vn+ 1 = v n +6(Wl+2W2 +2W 3 +W4) (A.3)

h
wn+ 1 = w n + "7(K1 + 2K 2 + 2K 3 + K4)

O-
(A.4)

xn+l = Xn +6(Y1 +2Y2 +2Y3 +Y4) (A.5)

Yn+l = Yn +6(L1 + 2L2 +2L3 + L4) (A.6)

except in this case w o and Yo are also known and
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W 1 = w a

K1 = f(tn,vn,W1, Xn, Y1)

Y1 = Yn

L 1 = g(tn,vn,Wl,Xn,Y1)

h

W 2 = w n + _'K 1

L2 = g(t n + 2"'vnh + hwl,W2,xn + hyl,Y2)

Y2 = Yn +_L1

h

W 3 = w n + _ K2

K3 =f(t n + 2"'vnh +hw2,W3,xn +hy2,y3)

h

Y3 = Yn + _ L2

W 4 -- W n -t- hK 3

K 4 = f(t n +h,v n +hW3,W4,x n +hY3,Y4)

Y4 = Yn + hL3

L 4 = g(t n + h,v n + hW3,W4,x n + hY3,Y4)
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Appendix B

Harmonic Balance Method Equations

-Cf2 2 cos f2T - Dr'2 2 sin f2T + F(-Cf2 sin f2T + Dr2 cos £2T) + K(C cos f2T + D sin f2T)

_A (C cos _T + D sin f2T)(1 + K 2 (G cos f2T + H sin f2T) 2
2

+2 KI-'(G cos f2T + H sin _T)(-GO sin f2T + Hf2 cos f2T) + F 2 (-G f2 sin f2T + H£2 cos _T) 2)

= E_ 2 shafT 03.1)

-G_ 2 cos f2T - H.Q 2 sin _2T + F(-Gf2 sin f2T + HI2 cos f2T) + K(G cos f2T + H sin f2T)

_A (G cos f2T + H sin f2T)(1 + K 2 (C cos f2T + D sin X"2T)2
2

+2KF(C cos f2T + D sin f2T)(-Cf2 sin f2T + Dr2 cos _T) + F2 (-Cf2 sin fiT + Dr2 cos f_T) _-)

= El2 2 cosflT 03.2)

-- Ci"2 2 cos £2T - Df'2 2 sin fiT + F(-Cf2 sin fiT + Df2 cos fiT) + K(C cos fiT + D sin fIT)

+(IDG2 +--3DH2 + 1 CGH]sinf2T) + 2KI'T2((-IDG2 + !DH2 + 1 CGH) cOsg2T4 4

+(-1CG2\4 +1CH24 -1DGH] sin"T) - F2"2 (( 1CG2 +3DG24 - 2DGH) sin"T

+(4 ell2 +3DH24 - ICGI-I) ))= El22 sinf2T 03.3)
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-O_ 2 cos _T - t-I_ 2 sin f2T + F(-Gf2 sin f2T + HO cos f2T) + K(G cos f2T + H sin f2T)

Hsin _T)+ K2( 3C2G + 1D2 G + 1CDH_cosf2T_A ((G cosf2T + (4 4 z )

+(1C2Hk4 + 34D2H + 1CDG2 ))sin C2T)+ 2K1-T2((-1C2H\4 + 14D2H + 1CDG2 ) cos f2T

+(1D2 G + 3 D2 H _ 1CD G _)) = El,22 cos f2T 03.4)
\4 4 2 )

03.5)

-CKa2+CK+Drn ---Ac_A DOHX__ 3ACO_K2_A_CH2K:_ACOHXra
2 4 8 8 2

+A DG2KI..f. 2 _ A DH2KI..f. 2 + A DGHF2f22 _ A CG2F2f'22 _ 3A CH2r2_22 = 0
4 4 4 8 8

(B.6)

-DK.f2 z + DK - CFf2 - A D - A CGHK 2 _ ADG2K 2 3A DH2K 2 + ADGHKFO
2 4 8 8 2

A
+ _ CG2KI.,f2 _ A CH2KI.,x,.. 2 + A CGH1.,2f22 _ 3A DG2F2£22 _ A DH2F2_ 2 = EK.Q 2

4 4 4 8 8

03.7)

-OKf2 2+ GK + HYf_ -_AG - _A CDHK2 - 3A C2GK2 _A D2GK 2 _ A CDGKI.f_
2 4 8 8 2

+ A C21_[KI.,f2 _ A D2I_IKI_,f2 + A CDHF2f22 _ A C2GF2f22 _ 3A DZGF2£22 = EK.Q 2
4 4 4 8 8

03.8)

-EKn 2+EK_GFn_AI_I_ACDGK2_AC21_IK2 3AD2HK2+A_CDHKFn
2 4 8 8 2

+A C2GKFf 2 _ AD2GKIX 2 + A CDGF2f22 _ 3A C2I..IF2f22 _ A D2I_IF2f.22 = 0
4 4 4 8 8
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